Edit model card

REDEWIEDERGABE Tagger: indirect STWR

This model is part of an ensemble of binary taggers that recognize German speech, thought and writing representation, that is being used in LLpro. They can be used to automatically detect and annotate the following 4 types of speech, thought and writing representation in German texts:

STWR type Example Translation
direct Dann sagte er: "Ich habe Hunger." Then he said: "I'm hungry."
free indirect ('erlebte Rede') Er war ratlos. Woher sollte er denn hier bloß ein Mittagessen bekommen? He was at a loss. Where should he ever find lunch here?
indirect (this tagger) Sie fragte, wo das Essen sei. She asked where the food was.
reported Sie sprachen über das Mittagessen. They talked about lunch.

The ensemble is trained on the REDEWIEDERGABE corpus (Annotation guidelines), fine-tuning each tagger on the domain-adapted lkonle/fiction-gbert-large. (Training Code)

F1-Scores:

STWR type F1-Score
direct 90.76
indirect (this tagger) 79.16
free indirect 58.00
reported 70.47

Demo Usage:

from flair.data import Sentence
from flair.models import SequenceTagger


sentence = Sentence('Sie sprachen über das Mittagessen. Sie fragte, wo das Essen sei. Woher sollte er das wissen? Dann sagte er: "Ich habe Hunger."')

rwtypes = ['direct', 'indirect', 'freeindirect', 'reported']
for rwtype in rwtypes:
    model = SequenceTagger.load(f'aehrm/redewiedergabe-{rwtype}')
    model.predict(sentence)
    print(rwtype, [ x.data_point.text for x in sentence.get_labels() ])
# >>> direct ['"', 'Ich', 'habe', 'Hunger', '.', '"']
# >>> indirect ['wo', 'das', 'Essen', 'sei', '.']
# >>> freeindirect ['Woher', 'sollte', 'er', 'das', 'wissen', '?']
# >>> reported ['Sie', 'sprachen', 'über', 'das', 'Mittagessen', '.', 'Woher', 'sollte', 'er', 'das', 'wissen', '?']

Cite:

Please cite the following paper when using this model.

@inproceedings{ehrmanntraut-et-al-llpro-2023,
    address = {Ingolstadt, Germany},
    title = {{LLpro}: A Literary Language Processing Pipeline for {German} Narrative Text},
    booktitle = {Proceedings of the 10th Conference on Natural Language Processing ({KONVENS} 2022)},
    publisher = {{KONVENS} 2023 Organizers},
    author = {Ehrmanntraut, Anton and Konle, Leonard and Jannidis, Fotis},
    year = {2023},
}
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.