File size: 21,473 Bytes
9691248 3adf8a5 9691248 0f14a5b 9691248 3adf8a5 9691248 cf33838 9691248 3adf8a5 9691248 cea5efc 9691248 cea5efc 9691248 cea5efc 9691248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
import json
import multiprocessing
import os
import re
import shutil
from glob import glob
from pathlib import Path
import datasets
import duckdb
import numpy as np
import pandas as pd
from huggingface_hub import hf_hub_download
from .create_section_files import create_section_files
def mimic_cxr_image_path(dir, subject_id, study_id, dicom_id, ext='dcm'):
return os.path.join(dir, 'p' + str(subject_id)[:2], 'p' + str(subject_id),
's' + str(study_id), str(dicom_id) + '.' + ext)
def format(text):
# Remove newline, tab, repeated whitespaces, and leading and trailing whitespaces:
def remove(text):
text = re.sub(r'\n|\t', ' ', text)
text = re.sub(r'\s+', ' ', text)
return text.strip()
if isinstance(text, np.ndarray) or isinstance(text, list):
return [remove(t) if not pd.isna(t) else t for t in text]
else:
if pd.isna(text):
return text
return remove(text)
def create_lookup_table(df, columns, start_idx):
df = df.groupby(columns).head(1)[columns].sort_values(by=columns)
indices = range(start_idx, start_idx + len(df))
df['index'] = indices
return df, indices[-1]
def lookup_tables(con, tables):
luts_dict = {}
for k, v in tables.items():
luts_dict[k] = {}
start_idx = 0
if 'index_columns' in v:
for i in v['index_columns']:
lut, end_idx = create_lookup_table(con.sql(f"SELECT {i} FROM {k}").df(), [i], start_idx)
start_idx = end_idx + 1
luts_dict[k][i] = {str(row[i]): int(row['index']) for _, row in lut.iterrows()}
if 'value_columns' in v:
for i in v['value_columns']:
luts_dict[k][i] = start_idx
start_idx += 1
luts_dict[k]['total'] = start_idx
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'lookup_tables.json'), 'w') as file:
json.dump(luts_dict, file)
def prepare_dataset(physionet_dir, database_dir, num_workers=None):
num_workers = num_workers if num_workers is not None else multiprocessing.cpu_count() // 4
Path(database_dir).mkdir(parents=True, exist_ok=True)
sectioned_dir = os.path.join(database_dir, 'mimic_cxr_sectioned')
mimic_cxr_sectioned_path = os.path.join(sectioned_dir, 'mimic_cxr_sectioned.csv')
if not os.path.exists(mimic_cxr_sectioned_path):
print(f'{mimic_cxr_sectioned_path} does not exist, creating...')
# Check if reports exist. Reports for the first and last patients are checked only for speed, this comprimises comprehensiveness for speed:
report_paths = [
os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p10/p10000032/s50414267.txt'),
os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p10/p10000032/s53189527.txt'),
os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p10/p10000032/s53911762.txt'),
os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p10/p10000032/s56699142.txt'),
os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p19/p19999987/s55368167.txt'),
os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p19/p19999987/s58621812.txt'),
os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p19/p19999987/s58971208.txt'),
]
assert all([os.path.isfile(i) for i in report_paths]), f"""The reports do not exist with the following regex: {os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p1*/p1*/s*.txt')}.
"Please download them using wget -r -N -c -np --reject dcm --user <username> --ask-password https://physionet.org/files/mimic-cxr/2.0.0/"""
print('Extracting sections from reports...')
create_section_files(
reports_path=os.path.join(physionet_dir, 'mimic-cxr', '2.0.0', 'files'),
output_path=sectioned_dir,
no_split=True,
)
csv_paths = []
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'edstays.csv.gz'))[0])
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'medrecon.csv.gz'))[0])
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'pyxis.csv.gz'))[0])
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'triage.csv.gz'))[0])
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'vitalsign.csv.gz'))[0])
base_names = [os.path.basename(i) for i in csv_paths]
for i in ['edstays.csv.gz', 'medrecon.csv.gz', 'pyxis.csv.gz', 'triage.csv.gz', 'vitalsign.csv.gz']:
assert i in base_names, f"""Table {i} is missing from MIMIC-IV-ED.
Please download the tables from https://physionet.org/content/mimic-iv-ed. Do not decompress them."""
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-cxr-jpg', '*', 'mimic-cxr-2.0.0-metadata.csv.gz'))[0])
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-cxr-jpg', '*', 'mimic-cxr-2.0.0-chexpert.csv.gz'))[0])
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-cxr-jpg', '*', 'mimic-cxr-2.0.0-split.csv.gz'))[0])
base_names = [os.path.basename(i) for i in csv_paths[-3:]]
for i in ['mimic-cxr-2.0.0-metadata.csv.gz', 'mimic-cxr-2.0.0-chexpert.csv.gz', 'mimic-cxr-2.0.0-split.csv.gz']:
assert i in base_names, f"""CSV file {i} is missing from MIMIC-CXR-JPG.
Please download the tables from https://physionet.org/content/mimic-cxr-jpg. Do not decompress them."""
con = duckdb.connect(':memory:')
for i in csv_paths:
name = Path(i).stem.replace('.csv', '').replace('.gz', '').replace('-', '_').replace('.', '_')
print(f'Copying {name} into database...')
con.sql(f"CREATE OR REPLACE TABLE {name} AS FROM '{i}';")
# DuckDB has trouble reading the sectioned .csv file, read with pandas instead:
sections = pd.read_csv(mimic_cxr_sectioned_path)
# Remove the first character from the study column and rename it to study_id:
con.sql(
"""
CREATE OR REPLACE TABLE mimic_cxr_sectioned AS
SELECT *, CAST(SUBSTR(study, 2) AS INT32) AS study_id
FROM sections;
"""
)
# Combine StudyDate and StudyTime into a single column and create the studies table:
con.sql(
"""
CREATE OR REPLACE TABLE studies AS
SELECT *,
strptime(
CAST(StudyDate AS VARCHAR) || ' ' || lpad(split_part(CAST(StudyTime AS VARCHAR), '.', 1), 6, '0'),
'%Y%m%d %H%M%S'
) AS study_datetime
FROM mimic_cxr_2_0_0_metadata;
"""
)
# Load the table configuration:
path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tables.json')
path = path if os.path.exists(path) else hf_hub_download(repo_id='aehrc/cxrmate-ed', filename='tables.json')
with open(path, 'r') as f:
tables = json.load(f)
# Create lookup tables:
lookup_tables(con, tables)
# Collapse to one row per study, aggregate each studies columns as a list:
con.sql(
"""
CREATE OR REPLACE TABLE studies AS
SELECT
LIST(dicom_id) AS dicom_id,
FIRST(subject_id) AS subject_id,
study_id,
LIST(PerformedProcedureStepDescription) AS PerformedProcedureStepDescription,
LIST(ViewPosition) AS ViewPosition,
LIST(Rows) AS Rows,
LIST(Columns) AS Columns,
LIST(StudyDate) AS StudyDate,
LIST(StudyTime) AS StudyTime,
LIST(ProcedureCodeSequence_CodeMeaning) AS ProcedureCodeSequence_CodeMeaning,
LIST(ViewCodeSequence_CodeMeaning) AS ViewCodeSequence_CodeMeaning,
LIST(PatientOrientationCodeSequence_CodeMeaning) AS PatientOrientationCodeSequence_CodeMeaning,
LIST(study_datetime) AS study_datetime,
MAX(study_datetime) AS latest_study_datetime,
FROM studies
GROUP BY study_id;
"""
)
# Join and filter the studies that overlap with ED stays:
con.sql(
"""
CREATE OR REPLACE TABLE studies AS
SELECT
s.*,
e.hadm_id,
e.stay_id,
e.intime,
e.outtime,
FROM studies s
LEFT JOIN edstays e
ON s.subject_id = e.subject_id
AND e.intime < s.latest_study_datetime
AND e.outtime > s.latest_study_datetime
AND s.study_id != 59128861;
"""
) # Don't join study 59128861 as it overlaps with two ED stays
# Aggregate and add the edstays table:
con.sql(
"""
CREATE OR REPLACE TABLE edstays_aggregated AS
SELECT
FIRST(subject_id) AS subject_id,
stay_id,
LIST(intime) AS intime,
LIST(outtime) AS outtime,
LIST(gender) AS gender,
LIST(race) AS race,
LIST(arrival_transport) AS arrival_transport,
LIST(disposition) AS disposition,
FROM edstays
GROUP BY stay_id;
"""
)
con.sql(
"""
CREATE OR REPLACE TABLE studies AS
SELECT
s.*,
e.intime AS edstays_intime,
e.outtime AS edstays_outtime,
e.gender AS edstays_gender,
e.race AS edstays_race,
e.arrival_transport AS edstays_arrival_transport,
e.disposition AS edstays_disposition,
FROM studies s
LEFT JOIN edstays_aggregated e
ON s.stay_id = e.stay_id;
"""
)
# Aggregate and add the triage table:
con.sql(
"""
CREATE OR REPLACE TABLE triage_aggregated AS
SELECT
FIRST(subject_id) AS subject_id,
stay_id,
LIST(temperature) as temperature,
LIST(heartrate) AS heartrate,
LIST(resprate) AS resprate,
LIST(o2sat) AS o2sat,
LIST(sbp) AS sbp,
LIST(dbp) AS dbp,
LIST(pain) AS pain,
LIST(acuity) AS acuity,
LIST(chiefcomplaint) AS chiefcomplaint,
FROM triage
GROUP BY stay_id;
"""
)
con.sql(
"""
CREATE OR REPLACE TABLE studies AS
SELECT
s.*,
t.temperature AS triage_temperature,
t.heartrate AS triage_heartrate,
t.resprate AS triage_resprate,
t.o2sat AS triage_o2sat,
t.sbp AS triage_sbp,
t.dbp AS triage_dbp,
t.pain AS triage_pain,
t.acuity AS triage_acuity,
t.chiefcomplaint AS triage_chiefcomplaint,
FROM studies s
LEFT JOIN triage_aggregated t
ON s.stay_id = t.stay_id;
"""
)
# Aggregate and then add the vitalsign table (ensuring no rows with a charttime after the latest study_datetime):
con.sql(
"""
CREATE OR REPLACE TABLE vitalsign_causal AS
SELECT v.*, s.latest_study_datetime, s.study_id,
FROM vitalsign v
JOIN studies s ON v.stay_id = s.stay_id
WHERE v.charttime < s.latest_study_datetime;
"""
) # This duplicates the rows for stay_ids that cover multiple study_ids. Hence, the following joins must be on study_id, not stay_id.
con.sql(
"""
CREATE OR REPLACE TABLE vitalsign_aggregated AS
SELECT
study_id,
FIRST(subject_id) AS subject_id,
FIRST(stay_id) as stay_id,
LIST(charttime) AS charttime,
LIST(temperature) as temperature,
LIST(heartrate) AS heartrate,
LIST(resprate) AS resprate,
LIST(o2sat) AS o2sat,
LIST(sbp) AS sbp,
LIST(dbp) AS dbp,
LIST(rhythm) AS rhythm,
LIST(pain) AS pain,
FROM vitalsign_causal
GROUP BY study_id;
"""
)
con.sql(
"""
CREATE OR REPLACE TABLE studies AS
SELECT
s.*,
v.charttime AS vitalsign_charttime,
v.temperature AS vitalsign_temperature,
v.heartrate AS vitalsign_heartrate,
v.resprate AS vitalsign_resprate,
v.o2sat AS vitalsign_o2sat,
v.sbp AS vitalsign_sbp,
v.dbp AS vitalsign_dbp,
v.rhythm AS vitalsign_rhythm,
v.pain AS vitalsign_pain,
FROM studies s
LEFT JOIN vitalsign_aggregated v
ON s.study_id = v.study_id;
"""
)
# Aggregate and then add the medrecon table:
con.sql(
"""
CREATE OR REPLACE TABLE medrecon_aggregated AS
SELECT
FIRST(subject_id) AS subject_id,
stay_id,
LIST(charttime) AS charttime,
LIST(name) as name,
LIST(gsn) AS gsn,
LIST(ndc) AS ndc,
LIST(etc_rn) AS etc_rn,
LIST(etccode) AS etccode,
LIST(etcdescription) AS etcdescription,
FROM medrecon
GROUP BY stay_id;
"""
)
con.sql(
"""
CREATE OR REPLACE TABLE studies AS
SELECT
s.*,
m.charttime AS medrecon_charttime,
m.name AS medrecon_name,
m.gsn AS medrecon_gsn,
m.ndc AS medrecon_ndc,
m.etc_rn AS medrecon_etc_rn,
m.etccode AS medrecon_etccode,
m.etcdescription AS medrecon_etcdescription,
FROM studies s
LEFT JOIN medrecon_aggregated m
ON s.stay_id = m.stay_id;
"""
)
# Aggregate and then add the pyxis table (ensuring no rows with a charttime after the latest study_datetime):
con.sql(
"""
CREATE OR REPLACE TABLE pyxis_causal AS
SELECT p.*, s.latest_study_datetime, s.study_id,
FROM pyxis p
JOIN studies s ON p.stay_id = s.stay_id
WHERE p.charttime < s.latest_study_datetime;
"""
) # This duplicates the rows for stay_ids that cover multiple study_ids. Hence, the following joins must be on study_id, not stay_id.
con.sql(
"""
CREATE OR REPLACE TABLE pyxis_aggregated AS
SELECT
study_id,
FIRST(subject_id) AS subject_id,
FIRST(stay_id) as stay_id,
LIST(charttime) AS charttime,
LIST(med_rn) as med_rn,
LIST(name) as name,
LIST(gsn_rn) AS gsn_rn,
LIST(gsn) AS gsn,
FROM pyxis_causal
GROUP BY study_id;
"""
)
con.sql(
"""
CREATE OR REPLACE TABLE studies AS
SELECT
s.*,
p.charttime AS pyxis_charttime,
p.med_rn AS pyxis_med_rn,
p.name AS pyxis_name,
p.gsn_rn AS pyxis_gsn_rn,
p.gsn AS pyxis_gsn,
FROM studies s
LEFT JOIN pyxis_aggregated p
ON s.study_id = p.study_id;
"""
)
# Add the reports:
con.sql(
"""
CREATE OR REPLACE TABLE studies AS
SELECT s.*, r.findings, r.impression, r.indication, r.history, r.comparison, r.last_paragraph, r.technique,
FROM studies s
LEFT JOIN mimic_cxr_sectioned r
ON s.study_id = r.study_id
"""
)
# Aggregate and then add the splits:
con.sql(
"""
CREATE OR REPLACE TABLE split_aggregated AS
SELECT
study_id,
FIRST(split) AS split,
FROM mimic_cxr_2_0_0_split
GROUP BY study_id;
"""
)
con.sql(
"""
CREATE OR REPLACE TABLE studies AS
SELECT s.*, x.split,
FROM studies s
JOIN split_aggregated x
ON s.study_id = x.study_id;
"""
)
# Prior studies column:
con.sql(
"""
CREATE OR REPLACE TABLE prior_studies AS
WITH sorted AS (
SELECT *,
ROW_NUMBER() OVER (PARTITION BY subject_id ORDER BY latest_study_datetime) AS rn
FROM studies
),
aggregated AS (
SELECT subject_id,
study_id,
latest_study_datetime,
ARRAY_AGG(study_id) OVER (PARTITION BY subject_id ORDER BY rn ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) AS prior_study_ids,
ARRAY_AGG(latest_study_datetime) OVER (PARTITION BY subject_id ORDER BY rn ROWS BETWEEN UNBOUNDED PRECEDING AND 1 PRECEDING) AS prior_study_datetimes
FROM sorted
)
SELECT *
FROM aggregated;
"""
)
con.sql(
"""
CREATE OR REPLACE TABLE studies AS
SELECT s.*, p.prior_study_ids, p.prior_study_datetimes,
FROM studies s
LEFT JOIN prior_studies p
ON s.study_id = p.study_id
ORDER BY s.subject_id, s.study_datetime DESC;
"""
)
# Text columns:
text_columns = [f'{k}_{j}' if k != 'mimic_cxr_sectioned' else j for k, v in tables.items() if 'text_columns' in v for j in (v['text_columns'] if isinstance(v['text_columns'], list) else [v['text_columns']])] + ['findings', 'impression']
pattern = os.path.join(physionet_dir, 'mimic-cxr-jpg', '*', 'files')
mimic_cxr_jpg_dir = glob(pattern)
assert len(mimic_cxr_jpg_dir), f'Multiple directories matched the pattern {pattern}: {mimic_cxr_jpg_dir}. Only one is required.'
mimic_cxr_jpg_dir = mimic_cxr_jpg_dir[0]
def load_image(row):
images = []
for dicom_ids, study_id, subject_id in zip(row['dicom_id'], row['study_id'], row['subject_id']):
study_images = []
for dicom_id in dicom_ids:
image_path = mimic_cxr_image_path(mimic_cxr_jpg_dir, subject_id, study_id, dicom_id, 'jpg')
with open(image_path, 'rb') as f:
image = f.read()
study_images.append(image)
images.append(study_images)
row['images'] = images
return row
dataset_dict = {}
for split in ['test', 'validate', 'train']:
df = con.sql(f"FROM studies WHERE split = '{split}'").df()
# Format text columns:
for i in text_columns:
df[i] = df[i].apply(format)
# Save indices for each split:
df[df['findings'].notna() & df['impression'].notna()]['study_id'].to_json(
os.path.join(os.path.dirname(os.path.abspath(__file__)), f'mimic_cxr_jpg_{split}_study_ids.json'),
orient='records',
lines=False,
)
df_stay_id = df[df['findings'].notna() & df['impression'].notna() & df['stay_id'].notna()][['study_id', 'stay_id']]
df_stay_id['stay_id'] = df_stay_id['stay_id'].astype(int)
df_stay_id['study_id'].to_json(
os.path.join(os.path.dirname(os.path.abspath(__file__)), f'mimic_iv_ed_mimic_cxr_jpg_{split}_study_ids.json'),
orient='records',
lines=False,
)
if split == 'test':
pyxis_columns = [col for col in df.columns if col.startswith('pyxis_')]
df_pyxis = df[df['findings'].notna() & df['impression'].notna() & df['stay_id'].notna()]
df_pyxis = df_pyxis[~df_pyxis[pyxis_columns].isna().all(axis=1)]
df_pyxis['study_id'].to_json(
os.path.join(os.path.dirname(os.path.abspath(__file__)), f'mimic_iv_ed_mimic_cxr_jpg_pyxis_{split}_study_ids.json'),
orient='records',
lines=False,
)
vitalsign_columns = [col for col in df.columns if col.startswith('vitalsign_')]
df_vitalsign = df[df['findings'].notna() & df['impression'].notna() & df['stay_id'].notna()]
df_vitalsign = df_vitalsign[~df_vitalsign[vitalsign_columns].isna().all(axis=1)]
df_vitalsign['study_id'].to_json(
os.path.join(os.path.dirname(os.path.abspath(__file__)), f'mimic_iv_ed_mimic_cxr_jpg_vitalsign_{split}_study_ids.json'),
orient='records',
lines=False,
)
dataset_dict[split] = datasets.Dataset.from_pandas(df)
cache_dir = os.path.join(database_dir, '.cache')
Path(cache_dir).mkdir(parents=True, exist_ok=True)
dataset_dict[split] = dataset_dict[split].map(
load_image,
num_proc=num_workers,
writer_batch_size=8,
batched=True,
batch_size=8,
keep_in_memory=False,
cache_file_name=os.path.join(cache_dir, f'.{split}'),
load_from_cache_file=False,
)
dataset_dict[split].cleanup_cache_files()
shutil.rmtree(cache_dir)
dataset = datasets.DatasetDict(dataset_dict)
dataset.save_to_disk(os.path.join(database_dir, 'mimic_iv_ed_mimic_cxr_jpg_dataset'))
con.close()
if __name__ == "__main__":
physionet_dir = '/datasets/work/hb-mlaifsp-mm/work/archive/physionet.org/files' # Where MIMIC-CXR, MIMIC-CXR-JPG, and MIMIC-IV-ED are stored.
database_dir = '/scratch3/nic261/database/cxrmate_ed' # Where the resultant database will be stored.
prepare_dataset(physionet_dir=physionet_dir, database_dir=database_dir)
|