File size: 16,162 Bytes
6f7f115 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
from collections import OrderedDict
from functools import partial
from typing import Optional, Tuple, Union
from math import isqrt
import torch
import torch.nn as nn
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from transformers import ViTConfig
from transformers.modeling_outputs import ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
logger = logging.get_logger(__name__)
layer_scale = False
init_value = 1e-6
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class CMlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class CBlock(nn.Module):
def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU):
super().__init__()
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
self.norm1 = nn.BatchNorm2d(dim)
self.conv1 = nn.Conv2d(dim, dim, 1)
self.conv2 = nn.Conv2d(dim, dim, 1)
self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = nn.BatchNorm2d(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.pos_embed(x)
x = x + self.module_1(x)
x = x + self.module_2(x)
return x
def module_1(self, x):
x = self.norm1(x.to(dtype=self.norm1.weight.dtype)) # Won't autocast to the dtype of the parameters of nn.BatchNorm2d.
x = self.conv1(x)
x = self.attn(x)
x = self.conv2(x)
x = self.drop_path(x)
return x
def module_2(self, x):
x = self.norm2(x.to(dtype=self.norm2.weight.dtype)) # Won't autocast to the dtype of the parameters of nn.BatchNorm2d.
x = self.mlp(x)
x = self.drop_path(x)
return x
class SABlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
global layer_scale
self.ls = layer_scale
if self.ls:
global init_value
print(f"Use layer_scale: {layer_scale}, init_values: {init_value}")
self.gamma_1 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)
self.gamma_2 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)
def forward(self, x):
x = x + self.pos_embed(x)
B, N, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
if self.ls:
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
x = x.transpose(1, 2).reshape(B, N, H, W)
return x
class HeadEmbedding(nn.Module):
def __init__(self, in_channels, out_channels):
super(HeadEmbedding, self).__init__()
self.proj = nn.Sequential(
nn.Conv2d(in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
nn.BatchNorm2d(out_channels // 2),
nn.GELU(),
nn.Conv2d(out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
nn.BatchNorm2d(out_channels),
)
def forward(self, x):
x = self.proj(x)
return x
class MiddleEmbedding(nn.Module):
def __init__(self, in_channels, out_channels):
super(MiddleEmbedding, self).__init__()
self.proj = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
nn.BatchNorm2d(out_channels),
)
def forward(self, x):
x = self.proj(x)
return x
class PatchEmbed(nn.Module):
def __init__(self, image_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
image_size = to_2tuple(image_size)
patch_size = to_2tuple(patch_size)
num_patches_height = image_size[0] // patch_size[0]
num_patches_width = image_size[1] // patch_size[1]
num_patches = num_patches_height * num_patches_width
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = nn.LayerNorm(embed_dim)
def forward(self, x):
_, _, H, W = x.shape
assert H == self.image_size[0] and W == self.image_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
x = self.proj(x)
B, _, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
return x
class UniFormer(nn.Module):
def __init__(self, depth=[3, 4, 8, 3], image_size=224, in_chans=3, num_classes=1000, embed_dim=[64, 128, 320, 512],
head_dim=64, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, patch_size=[4, 2, 2, 2],
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., conv_stem=False, layer_norm_eps=1e-6, **kwargs):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
norm_layer = partial(nn.LayerNorm, eps=layer_norm_eps)
if conv_stem:
self.patch_embed1 = HeadEmbedding(in_channels=in_chans, out_channels=embed_dim[0])
self.patch_embed2 = MiddleEmbedding(in_channels=embed_dim[0], out_channels=embed_dim[1])
self.patch_embed3 = MiddleEmbedding(in_channels=embed_dim[1], out_channels=embed_dim[2])
self.patch_embed4 = MiddleEmbedding(in_channels=embed_dim[2], out_channels=embed_dim[3])
else:
self.patch_embed1 = PatchEmbed(
image_size=image_size, patch_size=patch_size[0], in_chans=in_chans, embed_dim=embed_dim[0])
self.patch_embed2 = PatchEmbed(
image_size=image_size // patch_size[0], patch_size=patch_size[1], in_chans=embed_dim[0], embed_dim=embed_dim[1])
self.patch_embed3 = PatchEmbed(
image_size=image_size // (patch_size[0]*patch_size[1]), patch_size=patch_size[2], in_chans=embed_dim[1], embed_dim=embed_dim[2])
self.patch_embed4 = PatchEmbed(
image_size=image_size // (patch_size[0]*patch_size[1]*patch_size[2]), patch_size=patch_size[3], in_chans=embed_dim[2], embed_dim=embed_dim[3])
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] # stochastic depth decay rule
num_heads = [dim // head_dim for dim in embed_dim]
self.blocks1 = nn.ModuleList([
CBlock(dim=embed_dim[0], mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i])
for i in range(depth[0])])
self.blocks2 = nn.ModuleList([
CBlock(dim=embed_dim[1], mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i+depth[0]])
for i in range(depth[1])])
self.blocks3 = nn.ModuleList([
SABlock(
dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer)
for i in range(depth[2])])
self.blocks4 = nn.ModuleList([
SABlock(
dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer)
for i in range(depth[3])])
self.norm = nn.BatchNorm2d(embed_dim[-1])
# Representation layer
if representation_size:
self.num_features = representation_size
self.pre_logits = nn.Sequential(OrderedDict([
('fc', nn.Linear(embed_dim, representation_size)),
('act', nn.Tanh())
]))
else:
self.pre_logits = nn.Identity()
def forward_features(self, x):
x = self.patch_embed1(x)
x = self.pos_drop(x)
for blk in self.blocks1:
x = blk(x)
x = self.patch_embed2(x)
for blk in self.blocks2:
x = blk(x)
x = self.patch_embed3(x)
for blk in self.blocks3:
x = blk(x)
x = self.patch_embed4(x)
for blk in self.blocks4:
x = blk(x)
x = self.norm(x.to(dtype=self.norm.weight.dtype)) # Won't autocast to the dtype of the parameters of nn.BatchNorm2d.
x = self.pre_logits(x)
return x
def forward(self, x):
x = self.forward_features(x)
return x
class UniFormerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ViTConfig
base_model_prefix = "vit"
main_input_name = "pixel_values"
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
class UniFormerProjectionHead(torch.nn.Module):
def __init__(self, config) -> None:
super().__init__()
# Layer normalisation before projection:
self.layer_norm = torch.nn.LayerNorm(config.embed_dim[-1], eps=config.layer_norm_eps)
# No bias as following layer normalisation with bias:
self.projection = torch.nn.Linear(config.embed_dim[-1], config.projection_size, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.layer_norm(x)
x = self.projection(x)
return x
class UniFormerModel(UniFormerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.uniformer = UniFormer(**vars(config))
# Initialize weights and apply final processing:
self.post_init()
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ModelOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
last_hidden_state = self.uniformer(pixel_values)
# Flatten h x w:
last_hidden_state = torch.flatten(last_hidden_state, 2)
# Permute last hidden state:
last_hidden_state = torch.permute(last_hidden_state, [0, 2, 1])
# return last_hidden_state
if not return_dict:
return last_hidden_state
return ModelOutput(last_hidden_state=last_hidden_state)
class MultiUniFormerWithProjectionHead(UniFormerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.uniformer = UniFormer(**vars(config))
self.projection_head = UniFormerProjectionHead(config)
# Initialize weights and apply final processing:
self.post_init()
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ModelOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Flatten the batch and study_id dimensions:
assert len(pixel_values.shape) == 5, 'pixel_values must be B, S, C, H, W, where S is the max number of images for a study in the batch.'
last_hidden_state = self.uniformer(pixel_values.view(-1, *pixel_values.shape[2:]))
# last_hidden_state = self.uniformer(pixel_values.flatten(start_dim=0, end_dim=1))
# Flatten h x w:
last_hidden_state = torch.flatten(last_hidden_state, 2)
# Project the features for each spatial position to the decoder's hidden size:
projection = self.projection_head(torch.permute(last_hidden_state, [0, 2, 1]))
# Concatenate the features for each chest X-ray:
projection = projection.view(pixel_values.shape[0], -1, projection.shape[-1])
# Derive the attention mask from the pixel values:
mask = (pixel_values[:, :, 0, 0, 0] != 0.0)[:, :, None]
attention_mask = torch.ones(
[projection.shape[0], pixel_values.shape[1], projection.shape[1] // pixel_values.shape[1]],
dtype=torch.long,
device=mask.device,
)
attention_mask = attention_mask * mask
attention_mask = attention_mask.view(attention_mask.shape[0], -1)
if not return_dict:
return projection
return ModelOutput(last_hidden_state=projection, attention_mask=attention_mask)
if __name__ == '__main__':
y = PatchEmbed()
y(torch.randn(2, 3, 224, 224))
|