Upload model
Browse files- README.md +199 -0
- config.json +237 -0
- dataset.py +382 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- modelling_cxrmate_ed.py +1129 -0
- modelling_uniformer.py +412 -0
- records.py +369 -0
- tables.py +159 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MIMICIVEDCXRMultimodalModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoModel": "modelling_cxrmate_ed.MIMICIVEDCXRMultimodalModel"
|
7 |
+
},
|
8 |
+
"decoder": {
|
9 |
+
"_name_or_path": "",
|
10 |
+
"add_cross_attention": false,
|
11 |
+
"add_time_deltas": true,
|
12 |
+
"architectures": null,
|
13 |
+
"attention_bias": false,
|
14 |
+
"attention_dropout": 0.0,
|
15 |
+
"bad_words_ids": null,
|
16 |
+
"begin_suppress_tokens": null,
|
17 |
+
"bos_token_id": 1,
|
18 |
+
"chunk_size_feed_forward": 0,
|
19 |
+
"cross_attention_hidden_size": null,
|
20 |
+
"decoder_start_token_id": null,
|
21 |
+
"diversity_penalty": 0.0,
|
22 |
+
"do_sample": false,
|
23 |
+
"early_stopping": false,
|
24 |
+
"ed_module_columns": [
|
25 |
+
"triage_chiefcomplaint",
|
26 |
+
"triage_pain",
|
27 |
+
"vitalsign_pain"
|
28 |
+
],
|
29 |
+
"encoder_no_repeat_ngram_size": 0,
|
30 |
+
"eos_token_id": 2,
|
31 |
+
"exponential_decay_length_penalty": null,
|
32 |
+
"finetuning_task": null,
|
33 |
+
"forced_bos_token_id": null,
|
34 |
+
"forced_eos_token_id": null,
|
35 |
+
"hidden_act": "silu",
|
36 |
+
"hidden_size": 768,
|
37 |
+
"id2label": {
|
38 |
+
"0": "LABEL_0",
|
39 |
+
"1": "LABEL_1"
|
40 |
+
},
|
41 |
+
"include_time_delta": true,
|
42 |
+
"index_value_encoder_config": {
|
43 |
+
"edstays": 40,
|
44 |
+
"triage": 7,
|
45 |
+
"vitalsign": 1177
|
46 |
+
},
|
47 |
+
"index_value_encoder_intermediate_size": 2048,
|
48 |
+
"initializer_range": 0.02,
|
49 |
+
"intermediate_size": 3072,
|
50 |
+
"is_decoder": true,
|
51 |
+
"is_encoder_decoder": false,
|
52 |
+
"label2id": {
|
53 |
+
"LABEL_0": 0,
|
54 |
+
"LABEL_1": 1
|
55 |
+
},
|
56 |
+
"length_penalty": 1.0,
|
57 |
+
"max_length": 20,
|
58 |
+
"max_position_embeddings": 2048,
|
59 |
+
"mimic_cxr_columns": [
|
60 |
+
"indication",
|
61 |
+
"history"
|
62 |
+
],
|
63 |
+
"min_length": 0,
|
64 |
+
"model_type": "llama",
|
65 |
+
"no_repeat_ngram_size": 0,
|
66 |
+
"num_attention_heads": 12,
|
67 |
+
"num_beam_groups": 1,
|
68 |
+
"num_beams": 1,
|
69 |
+
"num_hidden_layers": 6,
|
70 |
+
"num_key_value_heads": 12,
|
71 |
+
"num_return_sequences": 1,
|
72 |
+
"num_token_types": 19,
|
73 |
+
"output_attentions": false,
|
74 |
+
"output_hidden_states": false,
|
75 |
+
"output_scores": false,
|
76 |
+
"pad_token_id": 4,
|
77 |
+
"prefix": null,
|
78 |
+
"pretraining_tp": 1,
|
79 |
+
"problem_type": null,
|
80 |
+
"pruned_heads": {},
|
81 |
+
"remove_invalid_values": false,
|
82 |
+
"repetition_penalty": 1.0,
|
83 |
+
"return_dict": true,
|
84 |
+
"return_dict_in_generate": false,
|
85 |
+
"rms_norm_eps": 1e-06,
|
86 |
+
"rope_scaling": null,
|
87 |
+
"rope_theta": 10000.0,
|
88 |
+
"sep_token_id": null,
|
89 |
+
"suppress_tokens": null,
|
90 |
+
"task_specific_params": null,
|
91 |
+
"temperature": 1.0,
|
92 |
+
"tf_legacy_loss": false,
|
93 |
+
"tie_encoder_decoder": false,
|
94 |
+
"tie_word_embeddings": false,
|
95 |
+
"time_delta_monotonic_inversion": true,
|
96 |
+
"token_type_to_token_type_id": {
|
97 |
+
"comparison": 15,
|
98 |
+
"edstays": 1,
|
99 |
+
"findings": 12,
|
100 |
+
"history": 11,
|
101 |
+
"image": 14,
|
102 |
+
"impression": 13,
|
103 |
+
"indication": 10,
|
104 |
+
"medrecon": 0,
|
105 |
+
"medrecon_name": 6,
|
106 |
+
"mimic_cxr_2_0_0_metadata": 5,
|
107 |
+
"previous_findings": 16,
|
108 |
+
"previous_image": 18,
|
109 |
+
"previous_impression": 17,
|
110 |
+
"pyxis": 4,
|
111 |
+
"triage": 2,
|
112 |
+
"triage_chiefcomplaint": 7,
|
113 |
+
"triage_pain": 8,
|
114 |
+
"vitalsign": 3,
|
115 |
+
"vitalsign_pain": 9
|
116 |
+
},
|
117 |
+
"tokenizer_class": null,
|
118 |
+
"top_k": 50,
|
119 |
+
"top_p": 1.0,
|
120 |
+
"torch_dtype": null,
|
121 |
+
"torchscript": false,
|
122 |
+
"typical_p": 1.0,
|
123 |
+
"use_bfloat16": false,
|
124 |
+
"use_cache": true,
|
125 |
+
"vocab_size": 30000,
|
126 |
+
"zero_time_delta_value": 1.0
|
127 |
+
},
|
128 |
+
"encoder": {
|
129 |
+
"_name_or_path": "",
|
130 |
+
"add_cross_attention": false,
|
131 |
+
"architectures": null,
|
132 |
+
"attention_probs_dropout_prob": 0.0,
|
133 |
+
"attn_drop_rate": 0.0,
|
134 |
+
"bad_words_ids": null,
|
135 |
+
"begin_suppress_tokens": null,
|
136 |
+
"bos_token_id": null,
|
137 |
+
"chunk_size_feed_forward": 0,
|
138 |
+
"conv_stem": false,
|
139 |
+
"cross_attention_hidden_size": null,
|
140 |
+
"decoder_start_token_id": null,
|
141 |
+
"depth": [
|
142 |
+
5,
|
143 |
+
8,
|
144 |
+
20,
|
145 |
+
7
|
146 |
+
],
|
147 |
+
"diversity_penalty": 0.0,
|
148 |
+
"do_sample": false,
|
149 |
+
"drop_path_rate": 0.3,
|
150 |
+
"drop_rate": 0.0,
|
151 |
+
"early_stopping": false,
|
152 |
+
"embed_dim": [
|
153 |
+
64,
|
154 |
+
128,
|
155 |
+
320,
|
156 |
+
512
|
157 |
+
],
|
158 |
+
"encoder_no_repeat_ngram_size": 0,
|
159 |
+
"encoder_stride": 16,
|
160 |
+
"eos_token_id": null,
|
161 |
+
"exponential_decay_length_penalty": null,
|
162 |
+
"finetuning_task": null,
|
163 |
+
"forced_bos_token_id": null,
|
164 |
+
"forced_eos_token_id": null,
|
165 |
+
"head_dim": 64,
|
166 |
+
"hidden_act": "gelu",
|
167 |
+
"hidden_dropout_prob": 0.0,
|
168 |
+
"hidden_size": 768,
|
169 |
+
"id2label": {
|
170 |
+
"0": "LABEL_0",
|
171 |
+
"1": "LABEL_1"
|
172 |
+
},
|
173 |
+
"image_size": 384,
|
174 |
+
"in_chans": 3,
|
175 |
+
"initializer_range": 0.02,
|
176 |
+
"intermediate_size": 3072,
|
177 |
+
"is_decoder": false,
|
178 |
+
"is_encoder_decoder": false,
|
179 |
+
"label2id": {
|
180 |
+
"LABEL_0": 0,
|
181 |
+
"LABEL_1": 1
|
182 |
+
},
|
183 |
+
"layer_norm_eps": 1e-06,
|
184 |
+
"length_penalty": 1.0,
|
185 |
+
"max_length": 20,
|
186 |
+
"min_length": 0,
|
187 |
+
"mlp_ratio": 4,
|
188 |
+
"model_type": "vit",
|
189 |
+
"no_repeat_ngram_size": 0,
|
190 |
+
"num_attention_heads": 12,
|
191 |
+
"num_beam_groups": 1,
|
192 |
+
"num_beams": 1,
|
193 |
+
"num_channels": 3,
|
194 |
+
"num_classes": 1000,
|
195 |
+
"num_hidden_layers": 12,
|
196 |
+
"num_return_sequences": 1,
|
197 |
+
"output_attentions": false,
|
198 |
+
"output_hidden_states": false,
|
199 |
+
"output_scores": false,
|
200 |
+
"pad_token_id": null,
|
201 |
+
"patch_size": [
|
202 |
+
4,
|
203 |
+
2,
|
204 |
+
2,
|
205 |
+
2
|
206 |
+
],
|
207 |
+
"prefix": null,
|
208 |
+
"problem_type": null,
|
209 |
+
"projection_size": 768,
|
210 |
+
"pruned_heads": {},
|
211 |
+
"qk_scale": null,
|
212 |
+
"qkv_bias": true,
|
213 |
+
"remove_invalid_values": false,
|
214 |
+
"repetition_penalty": 1.0,
|
215 |
+
"representation_size": null,
|
216 |
+
"return_dict": true,
|
217 |
+
"return_dict_in_generate": false,
|
218 |
+
"sep_token_id": null,
|
219 |
+
"suppress_tokens": null,
|
220 |
+
"task_specific_params": null,
|
221 |
+
"temperature": 1.0,
|
222 |
+
"tf_legacy_loss": false,
|
223 |
+
"tie_encoder_decoder": false,
|
224 |
+
"tie_word_embeddings": true,
|
225 |
+
"tokenizer_class": null,
|
226 |
+
"top_k": 50,
|
227 |
+
"top_p": 1.0,
|
228 |
+
"torch_dtype": null,
|
229 |
+
"torchscript": false,
|
230 |
+
"typical_p": 1.0,
|
231 |
+
"use_bfloat16": false
|
232 |
+
},
|
233 |
+
"model_type": "vision-encoder-decoder",
|
234 |
+
"tie_word_embeddings": false,
|
235 |
+
"torch_dtype": "float32",
|
236 |
+
"transformers_version": "4.39.0"
|
237 |
+
}
|
dataset.py
ADDED
@@ -0,0 +1,382 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import struct
|
3 |
+
|
4 |
+
import lmdb
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import torch
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
from torchvision.io import decode_image, read_image
|
10 |
+
|
11 |
+
from data.mimic_cxr.dcm_processing import load_and_preprocess_dcm_uint16
|
12 |
+
from tools.mimic_iv.ed_cxr.records import EDCXRSubjectRecords
|
13 |
+
from tools.utils import mimic_cxr_image_path
|
14 |
+
|
15 |
+
# Ordered by oblique, lateral, AP, and then PA views so that PA views are closest in position to the generated tokens (and oblique is furtherest).
|
16 |
+
VIEW_ORDER = ['LPO', 'RAO', 'LAO', 'SWIMMERS', 'XTABLE LATERAL', 'LL', 'LATERAL', 'AP AXIAL', 'AP RLD', 'AP LLD', 'AP', 'PA RLD', 'PA LLD', 'PA']
|
17 |
+
|
18 |
+
|
19 |
+
class StudyIDEDStayIDSubset(Dataset):
|
20 |
+
"""
|
21 |
+
Study ID & ED stay ID subset. Examples are indexed by the study identifier.
|
22 |
+
Information from the ED module is added by finding the study_id that is within
|
23 |
+
the timespan of the stay_id for the subject_id. The history and indication
|
24 |
+
sections are also included.
|
25 |
+
"""
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
mimic_iv_duckdb_path,
|
29 |
+
split,
|
30 |
+
dataset_dir=None,
|
31 |
+
max_images_per_study=None,
|
32 |
+
transforms=None,
|
33 |
+
images=True,
|
34 |
+
columns='study_id, dicom_id, subject_id, findings, impression',
|
35 |
+
and_condition='',
|
36 |
+
records=None,
|
37 |
+
study_id_inclusion_list=None,
|
38 |
+
return_images=True,
|
39 |
+
ed_module=True,
|
40 |
+
extension='jpg',
|
41 |
+
images_rocksdb_path=None,
|
42 |
+
jpg_lmdb_path=None,
|
43 |
+
jpg_rocksdb_path=None,
|
44 |
+
):
|
45 |
+
"""
|
46 |
+
Argument/s:
|
47 |
+
mimic_iv_duckdb_path - Path to MIMIC-IV DuckDB database.
|
48 |
+
split - 'train', 'validate', or 'test'.
|
49 |
+
dataset_dir - Dataset directory.
|
50 |
+
max_images_per_study - the maximum number of images per study.
|
51 |
+
transforms - torchvision transformations.
|
52 |
+
colour_space - PIL target colour space.
|
53 |
+
images - flag to return processed images.
|
54 |
+
columns - which columns to query on.
|
55 |
+
and_condition - AND condition to add to the SQL query.
|
56 |
+
records - MIMIC-IV records class instance.
|
57 |
+
study_id_inclusion_list - studies not in this list are excluded.
|
58 |
+
return_images - return CXR images for the study as tensors.
|
59 |
+
ed_module - use the ED module.
|
60 |
+
extension - 'jpg' or 'dcm'.
|
61 |
+
images_rocksdb_path - path to image RocksDB database.
|
62 |
+
jpg_lmdb_path - path to LMDB .jpg database.
|
63 |
+
jpg_rocksdb_path - path to RocksDB .jpg database.
|
64 |
+
"""
|
65 |
+
super(StudyIDEDStayIDSubset, self).__init__()
|
66 |
+
self.split = split
|
67 |
+
self.dataset_dir = dataset_dir
|
68 |
+
self.max_images_per_study = max_images_per_study
|
69 |
+
self.transforms = transforms
|
70 |
+
self.images = images
|
71 |
+
self.columns = columns
|
72 |
+
self.and_condition = and_condition
|
73 |
+
self.return_images = return_images
|
74 |
+
self.ed_module = ed_module
|
75 |
+
self.extension = extension
|
76 |
+
self.images_rocksdb_path = images_rocksdb_path
|
77 |
+
self.jpg_lmdb_path = jpg_lmdb_path
|
78 |
+
self.jpg_rocksdb_path = jpg_rocksdb_path
|
79 |
+
|
80 |
+
# If max images per study is not set:
|
81 |
+
self.max_images_per_study = float('inf') if self.max_images_per_study is None else self.max_images_per_study
|
82 |
+
|
83 |
+
assert self.extension == 'jpg' or self.extension == 'dcm'
|
84 |
+
|
85 |
+
if self.dataset_dir is not None and self.images_rocksdb_path is None:
|
86 |
+
if self.extension == 'jpg':
|
87 |
+
if 'physionet.org/files/mimic-cxr-jpg/2.0.0/files' not in self.dataset_dir:
|
88 |
+
self.dataset_dir = os.path.join(self.dataset_dir, 'physionet.org/files/mimic-cxr-jpg/2.0.0/files')
|
89 |
+
elif self.extension == 'dcm':
|
90 |
+
if 'physionet.org/files/mimic-cxr/2.0.0/files' not in self.dataset_dir:
|
91 |
+
self.dataset_dir = os.path.join(self.dataset_dir, 'physionet.org/files/mimic-cxr/2.0.0/files')
|
92 |
+
|
93 |
+
# Open the RocksDB images database:
|
94 |
+
if self.images_rocksdb_path is not None:
|
95 |
+
import rocksdb
|
96 |
+
|
97 |
+
# Define the column families:
|
98 |
+
column_families = {
|
99 |
+
b'shape': rocksdb.ColumnFamilyOptions(),
|
100 |
+
b'image': rocksdb.ColumnFamilyOptions(),
|
101 |
+
}
|
102 |
+
|
103 |
+
opts = rocksdb.Options()
|
104 |
+
opts.max_open_files = 1e+5
|
105 |
+
self.images_db = rocksdb.DB(self.images_rocksdb_path, opts, column_families=column_families, read_only=True)
|
106 |
+
|
107 |
+
self.shape_handle = self.images_db.get_column_family(b'shape')
|
108 |
+
self.image_handle = self.images_db.get_column_family(b'image')
|
109 |
+
|
110 |
+
self.shape_dtype = np.int32
|
111 |
+
self.image_dtype = np.uint16
|
112 |
+
|
113 |
+
# Prepare the RocksDB .jpg database:
|
114 |
+
if self.jpg_rocksdb_path is not None:
|
115 |
+
import rocksdb
|
116 |
+
|
117 |
+
opts = rocksdb.Options()
|
118 |
+
opts.max_open_files = 1e+5
|
119 |
+
|
120 |
+
self.images_db = rocksdb.DB(self.jpg_rocksdb_path, opts, read_only=True)
|
121 |
+
|
122 |
+
# Prepare the LMDB .jpg database:
|
123 |
+
if self.jpg_lmdb_path is not None:
|
124 |
+
|
125 |
+
print('Loading images using LMDB.')
|
126 |
+
|
127 |
+
# Map size:
|
128 |
+
map_size = int(0.65 * (1024 ** 4))
|
129 |
+
assert isinstance(map_size, int)
|
130 |
+
|
131 |
+
self.env = lmdb.open(self.jpg_lmdb_path, map_size=map_size, lock=False, readonly=True)
|
132 |
+
self.txn = self.env.begin(write=False)
|
133 |
+
|
134 |
+
self.records = EDCXRSubjectRecords(database_path=mimic_iv_duckdb_path) if records is None else records
|
135 |
+
|
136 |
+
query = f"""
|
137 |
+
SELECT {columns}
|
138 |
+
FROM mimic_cxr
|
139 |
+
WHERE split = '{split}'
|
140 |
+
{and_condition}
|
141 |
+
ORDER BY study_id
|
142 |
+
"""
|
143 |
+
|
144 |
+
# For multi-image, the study identifiers make up the training examples:
|
145 |
+
df = self.records.connect.sql(query).df()
|
146 |
+
|
147 |
+
# Drop studies that don't have a findings or impression section:
|
148 |
+
df = df.dropna(subset=['findings', 'impression'], how='any')
|
149 |
+
|
150 |
+
# This study has two rows in edstays (removed as it causes issues):
|
151 |
+
if self.ed_module:
|
152 |
+
df = df[df['study_id'] != 59128861]
|
153 |
+
|
154 |
+
# Exclude studies not in list:
|
155 |
+
if study_id_inclusion_list is not None:
|
156 |
+
df = df[df['study_id'].isin(study_id_inclusion_list)]
|
157 |
+
|
158 |
+
# Example study identifiers for the subset:
|
159 |
+
self.examples = df['study_id'].unique().tolist()
|
160 |
+
|
161 |
+
# Record statistics:
|
162 |
+
self.num_study_ids = len(self.examples)
|
163 |
+
self.num_dicom_ids = len(df['dicom_id'].unique().tolist())
|
164 |
+
self.num_subject_ids = len(df['subject_id'].unique().tolist())
|
165 |
+
|
166 |
+
def __len__(self):
|
167 |
+
return self.num_study_ids
|
168 |
+
|
169 |
+
def __getitem__(self, index):
|
170 |
+
|
171 |
+
study_id = self.examples[index]
|
172 |
+
|
173 |
+
# Get the study:
|
174 |
+
study = self.records.connect.sql(
|
175 |
+
f"""
|
176 |
+
SELECT dicom_id, study_id, subject_id, study_datetime, ViewPosition
|
177 |
+
FROM mimic_cxr
|
178 |
+
WHERE (study_id = {study_id});
|
179 |
+
"""
|
180 |
+
).df()
|
181 |
+
subject_id = study.iloc[0, study.columns.get_loc('subject_id')]
|
182 |
+
study_id = study.iloc[0, study.columns.get_loc('study_id')]
|
183 |
+
study_datetime = study['study_datetime'].max()
|
184 |
+
|
185 |
+
example_dict = {
|
186 |
+
'study_ids': study_id,
|
187 |
+
'subject_id': subject_id,
|
188 |
+
'index': index,
|
189 |
+
}
|
190 |
+
|
191 |
+
example_dict.update(self.records.return_mimic_cxr_features(study_id))
|
192 |
+
|
193 |
+
if self.ed_module:
|
194 |
+
edstays = self.records.connect.sql(
|
195 |
+
f"""
|
196 |
+
SELECT stay_id, intime, outtime
|
197 |
+
FROM edstays
|
198 |
+
WHERE (subject_id = {subject_id})
|
199 |
+
AND intime < '{study_datetime}'
|
200 |
+
AND outtime > '{study_datetime}';
|
201 |
+
"""
|
202 |
+
).df()
|
203 |
+
|
204 |
+
assert len(edstays) <= 1
|
205 |
+
stay_id = edstays.iloc[0, edstays.columns.get_loc('stay_id')] if not edstays.empty else None
|
206 |
+
self.records.clear_start_end_times()
|
207 |
+
example_dict.update(self.records.return_ed_module_features(stay_id, study_datetime))
|
208 |
+
|
209 |
+
example_dict['stay_ids'] = stay_id
|
210 |
+
|
211 |
+
if self.return_images:
|
212 |
+
example_dict['images'], example_dict['image_time_deltas'] = self.get_images(study, study_datetime)
|
213 |
+
|
214 |
+
return example_dict
|
215 |
+
|
216 |
+
def get_images(self, example, reference_time):
|
217 |
+
"""
|
218 |
+
Get the image/s for a given example.
|
219 |
+
|
220 |
+
Argument/s:
|
221 |
+
example - dataframe for the example.
|
222 |
+
reference_time - reference_time for time delta.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
The image/s for the example
|
226 |
+
"""
|
227 |
+
|
228 |
+
# Sample if over max_images_per_study. Only allowed during training:
|
229 |
+
if len(example) > self.max_images_per_study:
|
230 |
+
assert self.split == 'train'
|
231 |
+
example = example.sample(n=self.max_images_per_study, axis=0)
|
232 |
+
|
233 |
+
# Order by ViewPostion:
|
234 |
+
example['ViewPosition'] = example['ViewPosition'].astype(pd.CategoricalDtype(categories=VIEW_ORDER, ordered=True))
|
235 |
+
|
236 |
+
# Sort the DataFrame based on the categorical column
|
237 |
+
example = example.sort_values(by=['study_datetime', 'ViewPosition'])
|
238 |
+
|
239 |
+
# Load and pre-process each CXR:
|
240 |
+
images, time_deltas = [], []
|
241 |
+
for _, row in example.iterrows():
|
242 |
+
images.append(
|
243 |
+
self.load_and_preprocess_image(
|
244 |
+
row['subject_id'],
|
245 |
+
row['study_id'],
|
246 |
+
row['dicom_id'],
|
247 |
+
),
|
248 |
+
)
|
249 |
+
time_deltas.append(self.records.compute_time_delta(row['study_datetime'], reference_time, to_tensor=False))
|
250 |
+
|
251 |
+
if self.transforms is not None:
|
252 |
+
images = torch.stack(images, 0)
|
253 |
+
return images, time_deltas
|
254 |
+
|
255 |
+
def load_and_preprocess_image(self, subject_id, study_id, dicom_id):
|
256 |
+
"""
|
257 |
+
Load and preprocess an image using torchvision.transforms.v2:
|
258 |
+
https://pytorch.org/vision/stable/auto_examples/transforms/plot_transforms_getting_started.html#sphx-glr-auto-examples-transforms-plot-transforms-getting-started-py
|
259 |
+
|
260 |
+
Argument/s:
|
261 |
+
subject_id - subject identifier.
|
262 |
+
study_id - study identifier.
|
263 |
+
dicom_id - DICOM identifier.
|
264 |
+
|
265 |
+
Returns:
|
266 |
+
image - Tensor of the CXR.
|
267 |
+
"""
|
268 |
+
|
269 |
+
if self.extension == 'jpg':
|
270 |
+
|
271 |
+
if self.jpg_rocksdb_path is not None:
|
272 |
+
|
273 |
+
# Convert to bytes:
|
274 |
+
key = bytes(dicom_id, 'utf-8')
|
275 |
+
|
276 |
+
# Retrieve image:
|
277 |
+
image = bytearray(self.images_db.get(key))
|
278 |
+
image = torch.frombuffer(image, dtype=torch.uint8)
|
279 |
+
image = decode_image(image)
|
280 |
+
|
281 |
+
elif self.jpg_lmdb_path is not None:
|
282 |
+
|
283 |
+
# Convert to bytes:
|
284 |
+
key = bytes(dicom_id, 'utf-8')
|
285 |
+
|
286 |
+
# Retrieve image:
|
287 |
+
image = bytearray(self.txn.get(key))
|
288 |
+
image = torch.frombuffer(image, dtype=torch.uint8)
|
289 |
+
image = decode_image(image)
|
290 |
+
|
291 |
+
else:
|
292 |
+
image_file_path = mimic_cxr_image_path(self.dataset_dir, subject_id, study_id, dicom_id, self.extension)
|
293 |
+
image = read_image(image_file_path)
|
294 |
+
|
295 |
+
elif self.extension == 'dcm':
|
296 |
+
if self.images_rocksdb_path is not None:
|
297 |
+
|
298 |
+
key = dicom_id.encode('utf-8')
|
299 |
+
|
300 |
+
# Retrieve the serialized image shape associated with the key:
|
301 |
+
shape_bytes = self.images_db.get((self.shape_handle, key), key)
|
302 |
+
shape = struct.unpack('iii', shape_bytes)
|
303 |
+
|
304 |
+
np.frombuffer(shape_bytes, dtype=self.shape_dtype).reshape(3)
|
305 |
+
|
306 |
+
# Retrieve the serialized image data associated with the key:
|
307 |
+
image_bytes = self.images_db.get((self.image_handle, key), key)
|
308 |
+
image = np.frombuffer(image_bytes, dtype=self.image_dtype).reshape(*shape)
|
309 |
+
|
310 |
+
else:
|
311 |
+
image_file_path = mimic_cxr_image_path(self.dataset_dir, subject_id, study_id, dicom_id, self.extension)
|
312 |
+
image = load_and_preprocess_dcm_uint16(image_file_path)
|
313 |
+
|
314 |
+
# Convert to a torch tensor:
|
315 |
+
image = torch.from_numpy(image)
|
316 |
+
|
317 |
+
if self.transforms is not None:
|
318 |
+
image = self.transforms(image)
|
319 |
+
|
320 |
+
return image
|
321 |
+
|
322 |
+
|
323 |
+
if __name__ == '__main__':
|
324 |
+
import time
|
325 |
+
|
326 |
+
from tqdm import tqdm
|
327 |
+
|
328 |
+
num_samples = 20
|
329 |
+
|
330 |
+
datasets = []
|
331 |
+
datasets.append(
|
332 |
+
StudyIDEDStayIDSubset(
|
333 |
+
dataset_dir='/datasets/work/hb-mlaifsp-mm/work/archive',
|
334 |
+
mimic_iv_duckdb_path='/scratch3/nic261/database/mimic_iv_duckdb_rev_b.db',
|
335 |
+
split='train',
|
336 |
+
extension='jpg',
|
337 |
+
ed_module=False,
|
338 |
+
),
|
339 |
+
)
|
340 |
+
|
341 |
+
datasets.append(
|
342 |
+
StudyIDEDStayIDSubset(
|
343 |
+
dataset_dir='/scratch3/nic261/datasets',
|
344 |
+
mimic_iv_duckdb_path='/scratch3/nic261/database/mimic_iv_duckdb_rev_b.db',
|
345 |
+
split='train',
|
346 |
+
extension='jpg',
|
347 |
+
ed_module=False,
|
348 |
+
),
|
349 |
+
)
|
350 |
+
|
351 |
+
datasets.append(
|
352 |
+
StudyIDEDStayIDSubset(
|
353 |
+
jpg_lmdb_path='/scratch3/nic261/database/mimic_cxr_jpg_lmdb_rev_a.db',
|
354 |
+
mimic_iv_duckdb_path='/scratch3/nic261/database/mimic_iv_duckdb_rev_b.db',
|
355 |
+
split='train',
|
356 |
+
extension='jpg',
|
357 |
+
ed_module=False,
|
358 |
+
),
|
359 |
+
)
|
360 |
+
|
361 |
+
datasets.append(
|
362 |
+
StudyIDEDStayIDSubset(
|
363 |
+
jpg_rocksdb_path='/scratch3/nic261/database/mimic_cxr_jpg_rocksdb.db',
|
364 |
+
mimic_iv_duckdb_path='/scratch3/nic261/database/mimic_iv_duckdb_rev_b.db',
|
365 |
+
split='train',
|
366 |
+
extension='jpg',
|
367 |
+
ed_module=False,
|
368 |
+
)
|
369 |
+
)
|
370 |
+
|
371 |
+
assert (datasets[1][0]['images'][0] == datasets[2][0]['images'][0]).all().item()
|
372 |
+
assert (datasets[1][5]['images'][0] == datasets[2][5]['images'][0]).all().item()
|
373 |
+
|
374 |
+
for d in datasets:
|
375 |
+
start_time = time.time()
|
376 |
+
indices = torch.randperm(len(d))[:num_samples] # Get random indices.
|
377 |
+
for i in tqdm(indices):
|
378 |
+
_ = d[i]
|
379 |
+
end_time = time.time()
|
380 |
+
elapsed_time = end_time - start_time
|
381 |
+
print(f"Elapsed time: {elapsed_time} seconds")
|
382 |
+
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 4,
|
6 |
+
"transformers_version": "4.39.0"
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4b1ed2a5298bb8999cb91a9b905ace6733e5c66ebdef9702baa4d421428fad3
|
3 |
+
size 644854104
|
modelling_cxrmate_ed.py
ADDED
@@ -0,0 +1,1129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import functools
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
from collections import OrderedDict
|
7 |
+
from glob import glob
|
8 |
+
from pathlib import Path
|
9 |
+
from typing import Dict, List, Optional, Tuple, Union
|
10 |
+
|
11 |
+
import duckdb
|
12 |
+
import pandas as pd
|
13 |
+
import streamlit as st
|
14 |
+
import torch
|
15 |
+
import transformers
|
16 |
+
from torch.nn import CrossEntropyLoss
|
17 |
+
from tqdm import tqdm
|
18 |
+
from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.modeling_outputs import Seq2SeqLMOutput
|
21 |
+
from transformers.modeling_utils import PreTrainedModel
|
22 |
+
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import (
|
23 |
+
VisionEncoderDecoderConfig,
|
24 |
+
)
|
25 |
+
from transformers.utils import logging
|
26 |
+
|
27 |
+
from .dataset import StudyIDEDStayIDSubset
|
28 |
+
from .modelling_uniformer import MultiUniFormerWithProjectionHead
|
29 |
+
from .records import EDCXRSubjectRecords
|
30 |
+
from .tables import ed_module_tables
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
def create_lookup_table(df, columns, start_idx):
|
36 |
+
df = df.groupby(columns).head(1)[columns].sort_values(by=columns)
|
37 |
+
indices = range(start_idx, start_idx + len(df))
|
38 |
+
df['index'] = indices
|
39 |
+
return df, indices[-1]
|
40 |
+
|
41 |
+
|
42 |
+
class FNNEncoder(torch.nn.Module):
|
43 |
+
def __init__(self, num_features, intermediate_size, decoder_hidden_size):
|
44 |
+
super().__init__()
|
45 |
+
self.up_proj = torch.nn.Linear(num_features, intermediate_size, bias=False)
|
46 |
+
self.down_proj = torch.nn.Linear(intermediate_size, decoder_hidden_size, bias=False)
|
47 |
+
self.act_fn = torch.nn.SiLU()
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
return self.down_proj(self.act_fn(self.up_proj(x)))
|
51 |
+
|
52 |
+
|
53 |
+
class MIMICIVEDCXRMultimodalModel(VisionEncoderDecoderModel):
|
54 |
+
|
55 |
+
config_class = VisionEncoderDecoderConfig
|
56 |
+
base_model_prefix = "vision_encoder_decoder"
|
57 |
+
main_input_name = "input_ids"
|
58 |
+
supports_gradient_checkpointing = True
|
59 |
+
|
60 |
+
def __init__(
|
61 |
+
self,
|
62 |
+
config: Optional[PretrainedConfig] = None,
|
63 |
+
encoder: Optional[PreTrainedModel] = None,
|
64 |
+
decoder: Optional[PreTrainedModel] = None,
|
65 |
+
DefaultEncoderClass = MultiUniFormerWithProjectionHead,
|
66 |
+
DefaultDecoderClass = transformers.LlamaForCausalLM,
|
67 |
+
):
|
68 |
+
|
69 |
+
if decoder:
|
70 |
+
assert not decoder.config.add_cross_attention, '"add_cross_attention" must be False for the given decoder'
|
71 |
+
assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'
|
72 |
+
|
73 |
+
if config is None and (encoder is None or decoder is None):
|
74 |
+
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
|
75 |
+
if config is None:
|
76 |
+
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
|
77 |
+
else:
|
78 |
+
if not isinstance(config, self.config_class):
|
79 |
+
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
|
80 |
+
|
81 |
+
config.tie_word_embeddings = False
|
82 |
+
|
83 |
+
# Initialize with config:
|
84 |
+
PreTrainedModel.__init__(self, config)
|
85 |
+
|
86 |
+
# Encoder:
|
87 |
+
if encoder is None:
|
88 |
+
encoder = DefaultEncoderClass(config=config.encoder)
|
89 |
+
|
90 |
+
# Decoder:
|
91 |
+
if decoder is None:
|
92 |
+
assert not config.decoder.add_cross_attention
|
93 |
+
decoder = DefaultDecoderClass(config=config.decoder)
|
94 |
+
|
95 |
+
self.encoder = encoder
|
96 |
+
self.decoder = decoder
|
97 |
+
|
98 |
+
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
|
99 |
+
logger.warning(
|
100 |
+
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
|
101 |
+
f" {self.config.encoder}"
|
102 |
+
)
|
103 |
+
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
|
104 |
+
logger.warning(
|
105 |
+
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
|
106 |
+
f" {self.config.decoder}"
|
107 |
+
)
|
108 |
+
|
109 |
+
self.encoder.config = self.config.encoder
|
110 |
+
self.decoder.config = self.config.decoder
|
111 |
+
|
112 |
+
assert config.decoder.is_decoder
|
113 |
+
assert not config.decoder.is_encoder_decoder
|
114 |
+
assert 'pad_token_id' in self.decoder.config.__dict__
|
115 |
+
assert 'time_delta_monotonic_inversion' in self.decoder.config.__dict__
|
116 |
+
assert 'zero_time_delta_value' in self.decoder.config.__dict__
|
117 |
+
assert 'add_time_deltas' in self.decoder.config.__dict__
|
118 |
+
|
119 |
+
assert isinstance(self.decoder.config.time_delta_monotonic_inversion, bool)
|
120 |
+
assert isinstance(self.decoder.config.zero_time_delta_value, float)
|
121 |
+
|
122 |
+
for k, v in self.decoder.config.index_value_encoder_config.items():
|
123 |
+
setattr(
|
124 |
+
self,
|
125 |
+
f'{k}_index_value_encoder',
|
126 |
+
FNNEncoder(
|
127 |
+
num_features=v,
|
128 |
+
intermediate_size=self.decoder.config.index_value_encoder_intermediate_size,
|
129 |
+
decoder_hidden_size=self.decoder.config.hidden_size,
|
130 |
+
),
|
131 |
+
)
|
132 |
+
if self.decoder.config.add_time_deltas:
|
133 |
+
self.time_delta_encoder = FNNEncoder(
|
134 |
+
num_features=1,
|
135 |
+
intermediate_size=self.decoder.config.index_value_encoder_intermediate_size,
|
136 |
+
decoder_hidden_size=self.decoder.config.hidden_size,
|
137 |
+
)
|
138 |
+
self.token_type_embeddings = torch.nn.Embedding(self.decoder.config.num_token_types, self.decoder.config.hidden_size)
|
139 |
+
|
140 |
+
@classmethod
|
141 |
+
def from_encoder_decoder_pretrained(
|
142 |
+
cls,
|
143 |
+
encoder_pretrained_model_name_or_path: str = None,
|
144 |
+
decoder_pretrained_model_name_or_path: str = None,
|
145 |
+
*model_args,
|
146 |
+
**kwargs,
|
147 |
+
) -> PreTrainedModel:
|
148 |
+
r"""
|
149 |
+
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model
|
150 |
+
checkpoints.
|
151 |
+
|
152 |
+
|
153 |
+
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
|
154 |
+
the model, you need to first set it back in training mode with `model.train()`.
|
155 |
+
|
156 |
+
Params:
|
157 |
+
encoder_pretrained_model_name_or_path (`str`, *optional*):
|
158 |
+
Information necessary to initiate the image encoder. Can be either:
|
159 |
+
|
160 |
+
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An
|
161 |
+
example is `google/vit-base-patch16-224-in21k`.
|
162 |
+
- A path to a *directory* containing model weights saved using
|
163 |
+
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
164 |
+
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
|
165 |
+
this case, `from_tf` should be set to `True` and a configuration object should be provided as
|
166 |
+
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
|
167 |
+
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
168 |
+
|
169 |
+
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
|
170 |
+
Information necessary to initiate the text decoder. Can be either:
|
171 |
+
|
172 |
+
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
173 |
+
- A path to a *directory* containing model weights saved using
|
174 |
+
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
175 |
+
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
|
176 |
+
this case, `from_tf` should be set to `True` and a configuration object should be provided as
|
177 |
+
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
|
178 |
+
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
179 |
+
|
180 |
+
model_args (remaining positional arguments, *optional*):
|
181 |
+
All remaning positional arguments will be passed to the underlying model's `__init__` method.
|
182 |
+
|
183 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
184 |
+
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
185 |
+
`output_attentions=True`).
|
186 |
+
|
187 |
+
- To update the encoder configuration, use the prefix *encoder_* for each configuration parameter.
|
188 |
+
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
|
189 |
+
- To update the parent model configuration, do not use a prefix for each configuration parameter.
|
190 |
+
|
191 |
+
Behaves differently depending on whether a `config` is provided or automatically loaded.
|
192 |
+
|
193 |
+
Example:
|
194 |
+
|
195 |
+
```python
|
196 |
+
>>> from transformers import VisionEncoderDecoderModel
|
197 |
+
|
198 |
+
>>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized
|
199 |
+
>>> model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
|
200 |
+
... "google/vit-base-patch16-224-in21k", "google-bert/bert-base-uncased"
|
201 |
+
... )
|
202 |
+
>>> # saving model after fine-tuning
|
203 |
+
>>> model.save_pretrained("./vit-bert")
|
204 |
+
>>> # load fine-tuned model
|
205 |
+
>>> model = VisionEncoderDecoderModel.from_pretrained("./vit-bert")
|
206 |
+
```"""
|
207 |
+
|
208 |
+
kwargs_encoder = {
|
209 |
+
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
|
210 |
+
}
|
211 |
+
|
212 |
+
kwargs_decoder = {
|
213 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
214 |
+
}
|
215 |
+
|
216 |
+
# remove encoder, decoder kwargs from kwargs
|
217 |
+
for key in kwargs_encoder.keys():
|
218 |
+
del kwargs["encoder_" + key]
|
219 |
+
for key in kwargs_decoder.keys():
|
220 |
+
del kwargs["decoder_" + key]
|
221 |
+
|
222 |
+
# Load and initialize the encoder and decoder
|
223 |
+
# The distinction between encoder and decoder at the model level is made
|
224 |
+
# by the value of the flag `is_decoder` that we need to set correctly.
|
225 |
+
encoder = kwargs_encoder.pop("model", None)
|
226 |
+
if encoder is None:
|
227 |
+
if encoder_pretrained_model_name_or_path is None:
|
228 |
+
raise ValueError(
|
229 |
+
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
|
230 |
+
"to be defined."
|
231 |
+
)
|
232 |
+
|
233 |
+
if "config" not in kwargs_encoder:
|
234 |
+
encoder_config, kwargs_encoder = transformers.AutoConfig.from_pretrained(
|
235 |
+
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
|
236 |
+
)
|
237 |
+
|
238 |
+
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
|
239 |
+
logger.info(
|
240 |
+
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
|
241 |
+
"from a decoder model. Cross-attention and casual mask are disabled."
|
242 |
+
)
|
243 |
+
encoder_config.is_decoder = False
|
244 |
+
encoder_config.add_cross_attention = False
|
245 |
+
|
246 |
+
kwargs_encoder["config"] = encoder_config
|
247 |
+
|
248 |
+
encoder = transformers.AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder)
|
249 |
+
|
250 |
+
decoder = kwargs_decoder.pop("model", None)
|
251 |
+
if decoder is None:
|
252 |
+
if decoder_pretrained_model_name_or_path is None:
|
253 |
+
raise ValueError(
|
254 |
+
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
|
255 |
+
"to be defined."
|
256 |
+
)
|
257 |
+
|
258 |
+
if "config" not in kwargs_decoder:
|
259 |
+
decoder_config, kwargs_decoder = transformers.AutoConfig.from_pretrained(
|
260 |
+
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
|
261 |
+
)
|
262 |
+
|
263 |
+
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
|
264 |
+
logger.info(
|
265 |
+
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
|
266 |
+
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
|
267 |
+
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
|
268 |
+
)
|
269 |
+
decoder_config.is_decoder = True
|
270 |
+
decoder_config.add_cross_attention = False
|
271 |
+
|
272 |
+
kwargs_decoder["config"] = decoder_config
|
273 |
+
|
274 |
+
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
|
275 |
+
logger.warning(
|
276 |
+
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
|
277 |
+
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
|
278 |
+
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
|
279 |
+
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
|
280 |
+
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
|
281 |
+
)
|
282 |
+
|
283 |
+
decoder = transformers.AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)
|
284 |
+
|
285 |
+
# instantiate config with corresponding kwargs
|
286 |
+
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs)
|
287 |
+
|
288 |
+
# make sure input & output embeddings is not tied
|
289 |
+
config.tie_word_embeddings = False
|
290 |
+
return cls(encoder=encoder, decoder=decoder, config=config)
|
291 |
+
|
292 |
+
def forward(
|
293 |
+
self,
|
294 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
295 |
+
decoder_attention_mask: Optional[torch.FloatTensor] = None,
|
296 |
+
decoder_token_type_ids: Optional[torch.LongTensor] = None,
|
297 |
+
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
298 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
299 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
300 |
+
decoder_position_ids: Optional[torch.LongTensor] = None,
|
301 |
+
labels: Optional[torch.LongTensor] = None,
|
302 |
+
use_cache: Optional[bool] = None,
|
303 |
+
output_attentions: Optional[bool] = None,
|
304 |
+
output_hidden_states: Optional[bool] = None,
|
305 |
+
return_dict: Optional[bool] = None,
|
306 |
+
**kwargs,
|
307 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
308 |
+
|
309 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
310 |
+
|
311 |
+
kwargs_decoder = {
|
312 |
+
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
313 |
+
}
|
314 |
+
|
315 |
+
assert decoder_position_ids is not None
|
316 |
+
assert decoder_attention_mask is not None
|
317 |
+
assert decoder_attention_mask.dtype == torch.long, f'The dtype for {decoder_attention_mask} was {decoder_attention_mask.dtype}. It should be torch.long'
|
318 |
+
assert decoder_token_type_ids is not None
|
319 |
+
|
320 |
+
if decoder_inputs_embeds is None:
|
321 |
+
decoder_inputs_embeds = self.decoder.get_input_embeddings()(decoder_input_ids)
|
322 |
+
decoder_inputs_embeds += self.token_type_embeddings(decoder_token_type_ids)
|
323 |
+
|
324 |
+
# Generation:
|
325 |
+
decoder_outputs = self.decoder(
|
326 |
+
inputs_embeds=decoder_inputs_embeds,
|
327 |
+
attention_mask=decoder_attention_mask,
|
328 |
+
position_ids=decoder_position_ids,
|
329 |
+
output_attentions=output_attentions,
|
330 |
+
output_hidden_states=output_hidden_states,
|
331 |
+
use_cache=use_cache,
|
332 |
+
past_key_values=past_key_values,
|
333 |
+
return_dict=return_dict,
|
334 |
+
**kwargs_decoder,
|
335 |
+
)
|
336 |
+
|
337 |
+
# Loss:
|
338 |
+
loss = None
|
339 |
+
if labels is not None:
|
340 |
+
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
341 |
+
loss_fct = CrossEntropyLoss()
|
342 |
+
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
|
343 |
+
|
344 |
+
if not return_dict:
|
345 |
+
if loss is not None:
|
346 |
+
return (loss,) + decoder_outputs + encoder_outputs
|
347 |
+
else:
|
348 |
+
return decoder_outputs + encoder_outputs
|
349 |
+
|
350 |
+
return Seq2SeqLMOutput(
|
351 |
+
loss=loss,
|
352 |
+
logits=decoder_outputs.logits,
|
353 |
+
past_key_values=decoder_outputs.past_key_values,
|
354 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
355 |
+
decoder_attentions=decoder_outputs.attentions,
|
356 |
+
)
|
357 |
+
|
358 |
+
def prepare_inputs_for_generation(
|
359 |
+
self,
|
360 |
+
input_ids,
|
361 |
+
special_token_ids,
|
362 |
+
prompt_attention_mask,
|
363 |
+
prompt_position_ids,
|
364 |
+
token_type_id_sections=None,
|
365 |
+
past_key_values=None,
|
366 |
+
use_cache=None,
|
367 |
+
**kwargs,
|
368 |
+
):
|
369 |
+
"""
|
370 |
+
Modification of:
|
371 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
|
372 |
+
"""
|
373 |
+
|
374 |
+
report_attention_mask = (input_ids != self.decoder.config.pad_token_id).long()
|
375 |
+
|
376 |
+
if past_key_values is None:
|
377 |
+
|
378 |
+
# 4D attention mask:
|
379 |
+
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality(prompt_attention_mask, report_attention_mask)
|
380 |
+
|
381 |
+
# Position identifiers accounting for padding:
|
382 |
+
report_position_ids = report_attention_mask.cumsum(-1) + prompt_position_ids.max(dim=1).values[:, None]
|
383 |
+
report_position_ids.masked_fill_(report_attention_mask == 0, 1)
|
384 |
+
decoder_position_ids = torch.cat([prompt_position_ids, report_position_ids], dim=1)
|
385 |
+
|
386 |
+
# `inputs_embeds` are only to be used in the 1st generation step:
|
387 |
+
inputs_embeds = torch.cat([kwargs['decoder_inputs_embeds'], self.decoder.get_input_embeddings()(input_ids)], dim=1)
|
388 |
+
|
389 |
+
decoder_token_type_ids = self.token_ids_to_token_type_ids(input_ids, special_token_ids, token_type_id_sections)
|
390 |
+
decoder_token_type_ids = torch.cat(
|
391 |
+
[
|
392 |
+
kwargs['decoder_token_type_ids'],
|
393 |
+
decoder_token_type_ids,
|
394 |
+
],
|
395 |
+
dim=1,
|
396 |
+
) # Add image token type identifiers.
|
397 |
+
|
398 |
+
input_dict = {
|
399 |
+
'decoder_input_ids': input_ids,
|
400 |
+
'decoder_inputs_embeds': inputs_embeds,
|
401 |
+
'decoder_token_type_ids': decoder_token_type_ids,
|
402 |
+
}
|
403 |
+
else:
|
404 |
+
|
405 |
+
# 4D attention mask:
|
406 |
+
decoder_attention_mask = self.create_4d_attention_mask_mixed_causality_past_key_values(prompt_attention_mask, report_attention_mask)
|
407 |
+
|
408 |
+
# Position identifiers accounting for padding:
|
409 |
+
decoder_position_ids = report_attention_mask.cumsum(-1) + prompt_position_ids.max(dim=1).values[:, None]
|
410 |
+
decoder_position_ids.masked_fill_(report_attention_mask == 0, 1)
|
411 |
+
|
412 |
+
# Always place token_ids_to_token_type_ids_past_key_values before input_ids = input_ids[:, remove_prefix_length:]:
|
413 |
+
decoder_token_type_ids = self.token_ids_to_token_type_ids_past_key_values(input_ids, special_token_ids, token_type_id_sections)
|
414 |
+
decoder_position_ids = decoder_position_ids[:, -1:]
|
415 |
+
|
416 |
+
past_length = past_key_values[0][0].shape[2]
|
417 |
+
|
418 |
+
# Some generation methods only pass the last input ID:
|
419 |
+
if input_ids.shape[1] > past_length:
|
420 |
+
remove_prefix_length = past_length
|
421 |
+
else:
|
422 |
+
# Keep only the final ID:
|
423 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
424 |
+
|
425 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
426 |
+
|
427 |
+
input_dict = {'decoder_input_ids': input_ids, 'decoder_token_type_ids': decoder_token_type_ids}
|
428 |
+
|
429 |
+
input_dict.update(
|
430 |
+
{
|
431 |
+
'decoder_attention_mask': decoder_attention_mask,
|
432 |
+
'decoder_position_ids': decoder_position_ids,
|
433 |
+
'past_key_values': past_key_values,
|
434 |
+
'use_cache': use_cache,
|
435 |
+
}
|
436 |
+
)
|
437 |
+
return input_dict
|
438 |
+
|
439 |
+
def token_ids_to_token_type_ids(self, token_ids, special_token_ids, token_type_id_sections=None):
|
440 |
+
"""
|
441 |
+
Extract token type identifiers from the token identifiers.
|
442 |
+
|
443 |
+
Argument/s:
|
444 |
+
token_ids - token identifiers.
|
445 |
+
special_token_ids - special token identifiers that indicate the separation between sections.
|
446 |
+
token_type_id_section - token type identifier for each section.
|
447 |
+
|
448 |
+
Returns:
|
449 |
+
token_type_ids - token type identifiers.
|
450 |
+
"""
|
451 |
+
|
452 |
+
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
|
453 |
+
|
454 |
+
mbatch_size, seq_len = token_ids.shape
|
455 |
+
token_type_ids = torch.full_like(token_ids, token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
|
456 |
+
|
457 |
+
for i, j in enumerate(special_token_ids):
|
458 |
+
# Find first occurrence of special tokens that indicate the boundary between sections:
|
459 |
+
cols = (token_ids == j).int().argmax(dim=1)
|
460 |
+
rows = torch.arange(mbatch_size, device=token_ids.device)
|
461 |
+
|
462 |
+
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
|
463 |
+
cols += 1
|
464 |
+
|
465 |
+
# Ensure that the column index is not out of bounds. If 0, then token_id not present.
|
466 |
+
# This is safe as index 0 is always a special token (now equal to 1 due to +1):
|
467 |
+
rows = rows[torch.logical_and(cols != 1, cols < seq_len)]
|
468 |
+
cols = cols[torch.logical_and(cols != 1, cols < seq_len)]
|
469 |
+
|
470 |
+
# Indices to that correspond to the second sequence:
|
471 |
+
if rows.nelement() != 0:
|
472 |
+
ids = torch.stack([
|
473 |
+
torch.stack([x, z]) for (x, y) in zip(rows, cols) for z in torch.arange(
|
474 |
+
y, seq_len, device=token_ids.device,
|
475 |
+
)
|
476 |
+
])
|
477 |
+
|
478 |
+
token_type_ids[ids[:, 0], ids[:, 1]] = token_type_id_sections[i + 1]
|
479 |
+
|
480 |
+
return token_type_ids
|
481 |
+
|
482 |
+
def token_ids_to_token_type_ids_past_key_values(self, token_ids, special_token_ids, token_type_id_sections=None):
|
483 |
+
"""
|
484 |
+
Extract token type identifiers from the token identifiers if past != None. Make sure to input all the
|
485 |
+
token_ids (e.g., do not input input_ids = input_ids[:, remove_prefix_length:] from prepare_inputs_for_generation).
|
486 |
+
|
487 |
+
Argument/s:
|
488 |
+
token_ids - token identifiers.
|
489 |
+
special_token_ids - special token identifiers that indicate the separation between sections.
|
490 |
+
|
491 |
+
Returns:
|
492 |
+
token_type_ids - token type identifiers.
|
493 |
+
"""
|
494 |
+
|
495 |
+
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
|
496 |
+
token_type_ids = torch.full([token_ids.shape[0], 1], token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
|
497 |
+
|
498 |
+
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
|
499 |
+
token_ids = token_ids[:, :-1]
|
500 |
+
|
501 |
+
for i, j in enumerate(special_token_ids):
|
502 |
+
|
503 |
+
# Find first occurrence of special token, which indicates the boundary between sections:
|
504 |
+
exists = torch.any(token_ids == j, dim=1, keepdim=True)
|
505 |
+
token_type_ids[exists] = token_type_id_sections[i + 1]
|
506 |
+
|
507 |
+
return token_type_ids
|
508 |
+
|
509 |
+
def tokenize_report_teacher_forcing(self, findings: str, impression: str, tokenizer: PreTrainedTokenizerFast, max_len: int):
|
510 |
+
"""
|
511 |
+
Tokenize the reports and creates the inputs and targets for teacher forcing.
|
512 |
+
|
513 |
+
Argument/s:
|
514 |
+
findings - findings sections.
|
515 |
+
impression - impression sections.
|
516 |
+
return_token_type_ids - return the token type identifiers.
|
517 |
+
tokenizer - Hugging Face tokenizer.
|
518 |
+
max_len - maximum number of tokens.
|
519 |
+
|
520 |
+
Returns:
|
521 |
+
decoder_input_ids - the token identifiers for the input of the decoder.
|
522 |
+
decoder_attention_mask - the attention mask for the decoder_input_ids.
|
523 |
+
label_ids - the label token identifiers for the decoder.
|
524 |
+
"""
|
525 |
+
|
526 |
+
# Prepare the sections for the tokenizer by placing special tokens between each section:
|
527 |
+
reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
|
528 |
+
zip(findings, impression)]
|
529 |
+
|
530 |
+
# Tokenize the report:
|
531 |
+
tokenized = tokenizer(
|
532 |
+
reports,
|
533 |
+
padding='longest',
|
534 |
+
truncation=True,
|
535 |
+
max_length=max_len + 1, # +1 to account for the bias between input and target.
|
536 |
+
return_tensors='pt',
|
537 |
+
return_token_type_ids=False,
|
538 |
+
add_special_tokens=False,
|
539 |
+
).to(self.device)
|
540 |
+
|
541 |
+
# Modify for language modelling:
|
542 |
+
batch_dict = {
|
543 |
+
|
544 |
+
# Labels for the decoder (shifted right by one for autoregression):
|
545 |
+
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
|
546 |
+
|
547 |
+
# Remove last token identifier to match the sequence length of the labels:
|
548 |
+
'decoder_input_ids': tokenized['input_ids'][:, :-1],
|
549 |
+
|
550 |
+
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
|
551 |
+
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
|
552 |
+
}
|
553 |
+
|
554 |
+
return batch_dict
|
555 |
+
|
556 |
+
def tokenize_report_teacher_forcing_rev_a(self, tokenizer: PreTrainedTokenizerFast, max_len: int, findings: Optional[str] = None, impression: Optional[str] = None, reports: Optional[str] = None):
|
557 |
+
"""
|
558 |
+
Tokenize the reports and creates the inputs and targets for teacher forcing.
|
559 |
+
|
560 |
+
Argument/s:
|
561 |
+
tokenizer - Hugging Face tokenizer.
|
562 |
+
max_len - maximum number of tokens.
|
563 |
+
findings - findings sections.
|
564 |
+
impression - impression sections.
|
565 |
+
reports - prepared reports, with special tokens and report sections.
|
566 |
+
|
567 |
+
Returns:
|
568 |
+
decoder_input_ids - the token identifiers for the input of the decoder.
|
569 |
+
decoder_attention_mask - the attention mask for the decoder_input_ids.
|
570 |
+
label_ids - the label token identifiers for the decoder.
|
571 |
+
"""
|
572 |
+
|
573 |
+
# Prepare the sections for the tokenizer by placing special tokens between each section:
|
574 |
+
if reports is None:
|
575 |
+
assert findings and impression, "If 'reports' is not defined, 'findings' and 'impression' need to be defined."
|
576 |
+
reports = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
|
577 |
+
zip(findings, impression)]
|
578 |
+
|
579 |
+
# Tokenize the report:
|
580 |
+
tokenized = tokenizer(
|
581 |
+
reports,
|
582 |
+
padding='longest',
|
583 |
+
truncation=True,
|
584 |
+
max_length=max_len + 1, # +1 to account for the bias between input and target.
|
585 |
+
return_tensors='pt',
|
586 |
+
return_token_type_ids=False,
|
587 |
+
add_special_tokens=False,
|
588 |
+
).to(self.device)
|
589 |
+
|
590 |
+
# Modify for language modelling:
|
591 |
+
batch_dict = {
|
592 |
+
|
593 |
+
# Labels for the decoder (shifted right by one for autoregression):
|
594 |
+
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
|
595 |
+
|
596 |
+
# Remove last token identifier to match the sequence length of the labels:
|
597 |
+
'decoder_input_ids': tokenized['input_ids'][:, :-1],
|
598 |
+
|
599 |
+
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
|
600 |
+
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
|
601 |
+
}
|
602 |
+
|
603 |
+
return batch_dict
|
604 |
+
|
605 |
+
def split_and_decode_sections(self, token_ids, special_token_ids, tokenizer: PreTrainedTokenizerFast):
|
606 |
+
"""
|
607 |
+
Split the token identifiers into sections, then convert the token identifiers into strings.
|
608 |
+
|
609 |
+
Argument/s:
|
610 |
+
token_ids - token identifiers.
|
611 |
+
special_token_ids - special token identifiers that indicate the end of each section.
|
612 |
+
tokenizer - Hugging Face tokenizer.
|
613 |
+
|
614 |
+
Returns:
|
615 |
+
token_type_ids - token type identifiers.
|
616 |
+
"""
|
617 |
+
|
618 |
+
_, seq_len = token_ids.shape
|
619 |
+
|
620 |
+
# The number of sections is the same as the number of special_token_ids:
|
621 |
+
num_sections = len(special_token_ids)
|
622 |
+
|
623 |
+
sections = {k: [] for k in range(num_sections)}
|
624 |
+
|
625 |
+
for i in token_ids:
|
626 |
+
prev_col = 0
|
627 |
+
for j, k in enumerate(special_token_ids):
|
628 |
+
|
629 |
+
# The maximum sequence length was exceeded, thus no more tokens:
|
630 |
+
if prev_col >= seq_len:
|
631 |
+
sections[j].append('')
|
632 |
+
continue
|
633 |
+
|
634 |
+
# Find first occurrence of special tokens that indicate the boundary between sections:
|
635 |
+
col = (i == k).int().argmax().item()
|
636 |
+
|
637 |
+
# If equal to 0, token was not found, set the column to the sequence length (as the decoder exceeded
|
638 |
+
# the maximum sequence length):
|
639 |
+
if col == 0:
|
640 |
+
col = seq_len
|
641 |
+
|
642 |
+
# Extract section token identifiers:
|
643 |
+
section_token_ids = i[prev_col:col]
|
644 |
+
prev_col = col
|
645 |
+
section_string = tokenizer.decode(section_token_ids, skip_special_tokens=True)
|
646 |
+
|
647 |
+
sections[j].append(section_string)
|
648 |
+
|
649 |
+
return tuple(sections.values())
|
650 |
+
|
651 |
+
def tokenize_text_columns(self, tokenizer: PreTrainedTokenizerFast, **kwargs):
|
652 |
+
"""
|
653 |
+
Tokenize the text columns from MIMIC-IV ED and MIMIC-CXR (excluding the findings and impression sections).
|
654 |
+
Time deltas for the input_ids are also prepared here.
|
655 |
+
|
656 |
+
Argument/s:
|
657 |
+
tokenizer - Hugging Face tokenizer.
|
658 |
+
|
659 |
+
Returns:
|
660 |
+
ed - dictionary containing the input_ids, token_type_ids, attention_mask and time_deltas for the ED module columns.
|
661 |
+
cxr - dictionary containing the input_ids, token_type_ids, and attention_mask for MIMIC-CXR columns.
|
662 |
+
"""
|
663 |
+
|
664 |
+
batch_size = len(kwargs['index'])
|
665 |
+
|
666 |
+
tokenized = {
|
667 |
+
'input_ids': {i: [] for i in range(batch_size)},
|
668 |
+
'token_type_ids': {i: [] for i in range(batch_size)},
|
669 |
+
'time_delta': {i: [] for i in range(batch_size)},
|
670 |
+
'attention_mask': torch.empty(batch_size, 0, 1, device=self.device),
|
671 |
+
}
|
672 |
+
|
673 |
+
for i in self.decoder.config.ed_module_columns + self.decoder.config.mimic_cxr_columns + ['previous_findings', 'previous_impression']:
|
674 |
+
if i in kwargs:
|
675 |
+
if f'{i}_time_delta' not in kwargs:
|
676 |
+
kwargs[f'{i}_time_delta'] = [[self.decoder.config.zero_time_delta_value for _ in j] if j is not None else None for j in kwargs[i]]
|
677 |
+
for x, (y, z) in enumerate(zip(kwargs[i], kwargs[f'{i}_time_delta'])):
|
678 |
+
if y is not None:
|
679 |
+
assert isinstance(y, list)
|
680 |
+
assert isinstance(z, list)
|
681 |
+
for text, time_delta in zip(y, z):
|
682 |
+
tokenized['input_ids'][x].append(
|
683 |
+
tokenizer(text, add_special_tokens=False, return_tensors='pt')['input_ids'].to(device=self.device)
|
684 |
+
)
|
685 |
+
tokenized['token_type_ids'][x].append(
|
686 |
+
torch.full(
|
687 |
+
(1, tokenized['input_ids'][x][-1].shape[-1]),
|
688 |
+
self.decoder.config.token_type_to_token_type_id[i],
|
689 |
+
dtype=torch.long,
|
690 |
+
device=self.device,
|
691 |
+
)
|
692 |
+
)
|
693 |
+
tokenized['time_delta'][x].append(
|
694 |
+
torch.full(
|
695 |
+
(1, tokenized['input_ids'][x][-1].shape[-1]),
|
696 |
+
time_delta,
|
697 |
+
dtype=torch.float32,
|
698 |
+
device=self.device,
|
699 |
+
)
|
700 |
+
)
|
701 |
+
|
702 |
+
tokenized['input_ids'] = [torch.cat(j, dim=1).T if j else torch.empty(0, 1, dtype=torch.long, device=self.device) for j in tokenized['input_ids'].values()]
|
703 |
+
tokenized['token_type_ids'] = [torch.cat(j, dim=1).T if j else torch.empty(0, 1, dtype=torch.long, device=self.device) for j in tokenized['token_type_ids'].values()]
|
704 |
+
tokenized['time_delta'] = [torch.cat(j, dim=1).T if j else torch.empty(0, 1, device=self.device) for j in tokenized['time_delta'].values()]
|
705 |
+
|
706 |
+
tokenized['input_ids'] = torch.nn.utils.rnn.pad_sequence(
|
707 |
+
tokenized['input_ids'], batch_first=True, padding_value=tokenizer.pad_token_id
|
708 |
+
)[:, :, 0]
|
709 |
+
tokenized['token_type_ids'] = torch.nn.utils.rnn.pad_sequence(
|
710 |
+
tokenized['token_type_ids'], batch_first=True, padding_value=0,
|
711 |
+
)[:, :, 0]
|
712 |
+
|
713 |
+
tokenized['attention_mask'] = (tokenized['input_ids'] != tokenizer.pad_token_id).int()
|
714 |
+
|
715 |
+
tokenized['time_delta'] = torch.nn.utils.rnn.pad_sequence(
|
716 |
+
tokenized['time_delta'], batch_first=True, padding_value=0,
|
717 |
+
)
|
718 |
+
|
719 |
+
return tokenized
|
720 |
+
|
721 |
+
def prepare_inputs(
|
722 |
+
self,
|
723 |
+
images,
|
724 |
+
tokenizer: PreTrainedTokenizerFast,
|
725 |
+
tokenized_report=None,
|
726 |
+
sep_token_id=None,
|
727 |
+
section_ids=None,
|
728 |
+
**batch,
|
729 |
+
):
|
730 |
+
"""
|
731 |
+
Tokenize the text columns from MIMIC-IV ED and MIMIC-CXR (excluding the findings and impression sections).
|
732 |
+
|
733 |
+
Argument/s:
|
734 |
+
images - images.
|
735 |
+
tokenizer - Hugging Face tokenizer.
|
736 |
+
tokenized_report - if training/teacher forcing, input the tokenized_report dict to include it in the prepared inputs.
|
737 |
+
separator_token_id - separator token identifier.
|
738 |
+
section_ids - section identifiers for the findings and impression sections.
|
739 |
+
|
740 |
+
Returns:
|
741 |
+
inputs_embeds - input embeddings.
|
742 |
+
attention_mask - attention mask.
|
743 |
+
token_type_ids - token type identifiers.
|
744 |
+
position_ids - position identifiers.
|
745 |
+
bos_token_ids - bos_token_ids for generation.
|
746 |
+
"""
|
747 |
+
|
748 |
+
input_ids = []
|
749 |
+
inputs_embeds = []
|
750 |
+
token_type_ids = []
|
751 |
+
attention_mask = []
|
752 |
+
time_delta = []
|
753 |
+
position_ids = None
|
754 |
+
bos_token_ids = None
|
755 |
+
|
756 |
+
# Index and value columns:
|
757 |
+
batch_size = len(batch['index'])
|
758 |
+
for k in self.decoder.config.index_value_encoder_config.keys():
|
759 |
+
if f'{k}_index_value_feats' not in batch:
|
760 |
+
batch[f'{k}_index_value_feats'] = torch.empty(batch_size, 0, self.decoder.config.index_value_encoder_config[k], device=self.device)
|
761 |
+
inputs_embeds.append(
|
762 |
+
getattr(self, f'{k}_index_value_encoder')(batch[f'{k}_index_value_feats'])
|
763 |
+
)
|
764 |
+
token_type_ids.append(batch[f'{k}_index_value_token_type_ids'] if f'{k}_index_value_token_type_ids' in batch else torch.empty(batch_size, 0, dtype=torch.long, device=self.device))
|
765 |
+
attention_mask.append(batch[f'{k}_index_value_mask'] if f'{k}_index_value_mask' in batch else torch.empty(batch_size, 0, dtype=torch.long, device=self.device))
|
766 |
+
if f'{k}_time_delta' in batch:
|
767 |
+
time_delta.append(batch[f'{k}_time_delta'])
|
768 |
+
else:
|
769 |
+
time_delta_index_value = torch.zeros(*batch[f'{k}_index_value_mask'].shape, 1, device=self.device) if f'{k}_index_value_mask' in batch else torch.empty(batch_size, 0, 1, device=self.device)
|
770 |
+
time_delta.append(time_delta_index_value)
|
771 |
+
|
772 |
+
# Tokenize text columns for prompt:
|
773 |
+
tokenized = self.tokenize_text_columns(tokenizer, **batch)
|
774 |
+
input_ids.append(tokenized['input_ids'])
|
775 |
+
token_type_ids.append(tokenized['token_type_ids'])
|
776 |
+
attention_mask.append(tokenized['attention_mask'])
|
777 |
+
time_delta.append(tokenized['time_delta'])
|
778 |
+
|
779 |
+
# Image encoder:
|
780 |
+
encoder_outputs = self.encoder(images)
|
781 |
+
inputs_embeds.append(encoder_outputs[0])
|
782 |
+
inputs_per_image = encoder_outputs[0].shape[-2] // images.shape[1]
|
783 |
+
padded_image_time_deltas = [i + [self.decoder.config.zero_time_delta_value] * (images.shape[1] - len(i)) for i in batch['image_time_deltas']]
|
784 |
+
time_delta_image_features = torch.tensor(padded_image_time_deltas, device=self.device).repeat_interleave(inputs_per_image, dim=1)
|
785 |
+
token_type_ids.append(
|
786 |
+
torch.where(
|
787 |
+
time_delta_image_features == self.decoder.config.zero_time_delta_value,
|
788 |
+
self.decoder.config.token_type_to_token_type_id['image'],
|
789 |
+
self.decoder.config.token_type_to_token_type_id['previous_image'],
|
790 |
+
),
|
791 |
+
)
|
792 |
+
attention_mask.append(encoder_outputs[1])
|
793 |
+
time_delta.append(time_delta_image_features[:, :, None])
|
794 |
+
|
795 |
+
# Compute embeddings from token identifiers:
|
796 |
+
input_ids = torch.cat(input_ids, dim=1)
|
797 |
+
inputs_embeds.append(self.decoder.get_input_embeddings()(input_ids))
|
798 |
+
|
799 |
+
# Concatentate time deltas and input embeddings before adding time delta embedding to prompt:
|
800 |
+
time_delta = torch.cat(time_delta, dim=1)
|
801 |
+
inputs_embeds = torch.cat(inputs_embeds, dim=1)
|
802 |
+
|
803 |
+
# Add time delta embeddings to prompt:
|
804 |
+
if time_delta.shape[1] > 0 and self.decoder.config.add_time_deltas:
|
805 |
+
time_delta = time_delta.to(dtype=inputs_embeds.dtype)
|
806 |
+
inputs_embeds += self.time_delta_encoder(time_delta)
|
807 |
+
|
808 |
+
# Concatentate the attention mask:
|
809 |
+
attention_mask = torch.cat(attention_mask, dim=1)
|
810 |
+
|
811 |
+
# Position identifiers:
|
812 |
+
position_ids = self.position_ids_from_time_deltas_and_attention_mask(time_delta, attention_mask)
|
813 |
+
|
814 |
+
# Tokenize report:
|
815 |
+
if tokenized_report is not None:
|
816 |
+
inputs_embeds = torch.cat([inputs_embeds, self.decoder.get_input_embeddings()(tokenized_report['decoder_input_ids'])], dim=1)
|
817 |
+
|
818 |
+
report_token_type_ids = self.token_ids_to_token_type_ids(
|
819 |
+
token_ids=tokenized_report['decoder_input_ids'],
|
820 |
+
special_token_ids=[sep_token_id],
|
821 |
+
token_type_id_sections=section_ids,
|
822 |
+
)
|
823 |
+
token_type_ids.append(report_token_type_ids)
|
824 |
+
|
825 |
+
# Position identifiers accounting for padding:
|
826 |
+
report_position_ids = tokenized_report['decoder_attention_mask'].cumsum(-1) + position_ids.max(dim=1).values[:, None]
|
827 |
+
report_position_ids.masked_fill_(tokenized_report['decoder_attention_mask'] == 0, 1)
|
828 |
+
position_ids = torch.cat([position_ids, report_position_ids], dim=1)
|
829 |
+
|
830 |
+
# 4D attention mask:
|
831 |
+
attention_mask = self.create_4d_attention_mask_mixed_causality(attention_mask, tokenized_report['decoder_attention_mask'])
|
832 |
+
# attention_mask_diagonal = torch.diagonal(attention_mask[:, 0], dim1=1, dim2=2)
|
833 |
+
|
834 |
+
else:
|
835 |
+
|
836 |
+
# BOS token identifiers for inference/generation:
|
837 |
+
bos_token_ids = torch.full((encoder_outputs[0].shape[0], 1), tokenizer.bos_token_id, dtype=torch.long, device=self.device)
|
838 |
+
|
839 |
+
# Concatentate the token type identifiers:
|
840 |
+
token_type_ids = torch.cat(token_type_ids, dim=1)
|
841 |
+
|
842 |
+
assert inputs_embeds.shape[1] == attention_mask.shape[-1]
|
843 |
+
assert inputs_embeds.shape[1] == token_type_ids.shape[1]
|
844 |
+
|
845 |
+
return inputs_embeds, attention_mask, token_type_ids, position_ids, bos_token_ids
|
846 |
+
|
847 |
+
@staticmethod
|
848 |
+
def create_4d_attention_mask_mixed_causality(non_causal_2d_attention_mask, causal_2d_attention_mask):
|
849 |
+
|
850 |
+
prompt_seq_len = non_causal_2d_attention_mask.shape[-1]
|
851 |
+
report_seq_len = causal_2d_attention_mask.shape[-1]
|
852 |
+
|
853 |
+
non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
|
854 |
+
causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
|
855 |
+
|
856 |
+
# Upper left of attention matrix:
|
857 |
+
upper_left = non_causal_2d_attention_mask.expand(-1, -1, prompt_seq_len, -1)
|
858 |
+
upper_left = upper_left * non_causal_2d_attention_mask
|
859 |
+
upper_left = upper_left * non_causal_2d_attention_mask.permute(0, 1, 3, 2)
|
860 |
+
|
861 |
+
causal_mask = torch.tril(
|
862 |
+
torch.ones(
|
863 |
+
(
|
864 |
+
report_seq_len,
|
865 |
+
report_seq_len,
|
866 |
+
),
|
867 |
+
dtype=torch.long,
|
868 |
+
device=causal_2d_attention_mask.device,
|
869 |
+
),
|
870 |
+
)
|
871 |
+
|
872 |
+
# Lower right of attention matrix:
|
873 |
+
lower_right = causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
|
874 |
+
lower_right = lower_right * causal_2d_attention_mask.permute(0, 1, 3, 2)
|
875 |
+
lower_right = lower_right * causal_mask
|
876 |
+
|
877 |
+
# Upper right of attention matrix:
|
878 |
+
upper_right = torch.zeros(
|
879 |
+
causal_2d_attention_mask.shape[0],
|
880 |
+
1,
|
881 |
+
prompt_seq_len,
|
882 |
+
report_seq_len,
|
883 |
+
dtype=torch.long,
|
884 |
+
device=causal_2d_attention_mask.device,
|
885 |
+
)
|
886 |
+
|
887 |
+
# Lower left of attention matrix:
|
888 |
+
lower_left = non_causal_2d_attention_mask.expand(-1, -1, report_seq_len, -1)
|
889 |
+
lower_left = lower_left * causal_2d_attention_mask.permute(0, 1, 3, 2)
|
890 |
+
|
891 |
+
left = torch.cat((upper_left, lower_left), dim=2)
|
892 |
+
right = torch.cat((upper_right, lower_right), dim=2)
|
893 |
+
|
894 |
+
mixed_causality_4d_attention_mask = torch.cat((left, right), dim=-1)
|
895 |
+
return mixed_causality_4d_attention_mask
|
896 |
+
|
897 |
+
@staticmethod
|
898 |
+
def create_4d_attention_mask_mixed_causality_past_key_values(non_causal_2d_attention_mask, causal_2d_attention_mask):
|
899 |
+
|
900 |
+
non_causal_2d_attention_mask = non_causal_2d_attention_mask[:, None, None, :]
|
901 |
+
causal_2d_attention_mask = causal_2d_attention_mask[:, None, None, :]
|
902 |
+
|
903 |
+
mixed_causality_4d_attention_mask = torch.cat((non_causal_2d_attention_mask, causal_2d_attention_mask), dim=-1)
|
904 |
+
return mixed_causality_4d_attention_mask
|
905 |
+
|
906 |
+
def position_ids_from_time_deltas_and_attention_mask(self, time_deltas, attention_mask):
|
907 |
+
_, col_indices = torch.sort(torch.where(attention_mask == 1, time_deltas[:, :, 0], torch.finfo(time_deltas.dtype).min), descending=not self.decoder.config.time_delta_monotonic_inversion)
|
908 |
+
|
909 |
+
num_rows, num_cols, _ = time_deltas.shape
|
910 |
+
|
911 |
+
row_indices = torch.arange(num_rows, device=time_deltas.device).view(-1, 1).repeat(1, num_cols).view(-1)
|
912 |
+
position_ids = torch.zeros_like(col_indices, device=time_deltas.device)
|
913 |
+
position_ids[row_indices, col_indices.flatten()] = torch.arange(num_cols, device=time_deltas.device)[None, :].expand(num_rows, -1).flatten()
|
914 |
+
position_ids.masked_fill_(attention_mask == 0, 1) # Following: https://github.com/huggingface/transformers/blob/c5f0288bc7d76f65996586f79f69fba8867a0e67/src/transformers/models/llama/modeling_llama.py#L1285
|
915 |
+
|
916 |
+
return position_ids
|
917 |
+
|
918 |
+
@staticmethod
|
919 |
+
def prepare_data(physionet_dir, database_path, dataset_dir=None):
|
920 |
+
|
921 |
+
dataset_dir = physionet_dir if dataset_dir is None else dataset_dir
|
922 |
+
|
923 |
+
sectioned_dir = os.path.join(dataset_dir, 'mimic_cxr_sectioned')
|
924 |
+
|
925 |
+
mimic_cxr_sectioned_path = os.path.join(sectioned_dir, 'mimic_cxr_sectioned.csv')
|
926 |
+
if not os.path.exists(mimic_cxr_sectioned_path):
|
927 |
+
print(f'{mimic_cxr_sectioned_path} does not exist, creating...')
|
928 |
+
|
929 |
+
# Check if reports exist. Reports for the first and last patients are checked only for speed, this comprimises comprehensiveness for speed:
|
930 |
+
report_paths = [
|
931 |
+
os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p10/p10000032/s50414267.txt'),
|
932 |
+
os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p10/p10000032/s53189527.txt'),
|
933 |
+
os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p10/p10000032/s53911762.txt'),
|
934 |
+
os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p10/p10000032/s56699142.txt'),
|
935 |
+
os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p19/p19999987/s55368167.txt'),
|
936 |
+
os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p19/p19999987/s58621812.txt'),
|
937 |
+
os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p19/p19999987/s58971208.txt'),
|
938 |
+
]
|
939 |
+
assert all([os.path.isfile(i) for i in report_paths]), f"""The reports do not exist with the following regex: {os.path.join(physionet_dir, 'mimic-cxr/2.0.0/files/p1*/p1*/s*.txt')}.
|
940 |
+
"Please download them using wget -r -N -c -np --reject dcm --user <username> --ask-password https://physionet.org/files/mimic-cxr/2.0.0/"""
|
941 |
+
|
942 |
+
print('Extracting sections from reports...')
|
943 |
+
create_sectioned_files(
|
944 |
+
reports_path=os.path.join(physionet_dir, 'mimic-cxr', '2.0.0', 'files'),
|
945 |
+
output_path=sectioned_dir,
|
946 |
+
no_split=True,
|
947 |
+
)
|
948 |
+
|
949 |
+
if not os.path.exists(database_path):
|
950 |
+
|
951 |
+
connect = duckdb.connect(database_path)
|
952 |
+
|
953 |
+
csv_paths = []
|
954 |
+
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'edstays.csv.gz'))[0])
|
955 |
+
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'medrecon.csv.gz'))[0])
|
956 |
+
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'pyxis.csv.gz'))[0])
|
957 |
+
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'triage.csv.gz'))[0])
|
958 |
+
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-iv-ed', '*', 'ed', 'vitalsign.csv.gz'))[0])
|
959 |
+
|
960 |
+
base_names = [os.path.basename(i) for i in csv_paths]
|
961 |
+
|
962 |
+
for i in ['edstays.csv.gz', 'medrecon.csv.gz', 'pyxis.csv.gz', 'triage.csv.gz', 'vitalsign.csv.gz']:
|
963 |
+
assert i in base_names, f"""Table {i} is missing from MIMIC-IV-ED.
|
964 |
+
Please download the tables from https://physionet.org/content/mimic-iv-ed. Do not decompress them."""
|
965 |
+
|
966 |
+
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-cxr-jpg', '*', 'mimic-cxr-2.0.0-metadata.csv.gz'))[0])
|
967 |
+
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-cxr-jpg', '*', 'mimic-cxr-2.0.0-chexpert.csv.gz'))[0])
|
968 |
+
csv_paths.append(glob(os.path.join(physionet_dir, 'mimic-cxr-jpg', '*', 'mimic-cxr-2.0.0-split.csv.gz'))[0])
|
969 |
+
|
970 |
+
base_names = [os.path.basename(i) for i in csv_paths[-3:]]
|
971 |
+
|
972 |
+
for i in ['mimic-cxr-2.0.0-metadata.csv.gz', 'mimic-cxr-2.0.0-chexpert.csv.gz', 'mimic-cxr-2.0.0-split.csv.gz']:
|
973 |
+
assert i in base_names, f"""CSV file {i} is missing from MIMIC-IV-ED.
|
974 |
+
Please download the tables from https://physionet.org/content/mimic-cxr-jpg. Do not decompress them."""
|
975 |
+
|
976 |
+
for i in csv_paths:
|
977 |
+
name = Path(i).stem.replace('.csv', '').replace('.gz', '').replace('-', '_').replace('.', '_')
|
978 |
+
print(f'Copying {name} into database...')
|
979 |
+
connect.sql(f"CREATE OR REPLACE TABLE {name} AS FROM '{i}';")
|
980 |
+
|
981 |
+
# MIMIC-CXR report sections:
|
982 |
+
print(f'Copying mimic_cxr_sectioned into database...')
|
983 |
+
connect.sql(f"CREATE OR REPLACE TABLE mimic_cxr_sectioned AS FROM '{mimic_cxr_sectioned_path}';")
|
984 |
+
connect.sql("ALTER TABLE mimic_cxr_sectioned RENAME COLUMN column0 TO study;")
|
985 |
+
connect.sql("ALTER TABLE mimic_cxr_sectioned RENAME COLUMN column1 TO impression;")
|
986 |
+
connect.sql("ALTER TABLE mimic_cxr_sectioned RENAME COLUMN column2 TO findings;")
|
987 |
+
connect.sql("ALTER TABLE mimic_cxr_sectioned RENAME COLUMN column3 TO indication;")
|
988 |
+
connect.sql("ALTER TABLE mimic_cxr_sectioned RENAME COLUMN column4 TO history;")
|
989 |
+
connect.sql("ALTER TABLE mimic_cxr_sectioned RENAME COLUMN column5 TO last_paragraph;")
|
990 |
+
connect.sql("ALTER TABLE mimic_cxr_sectioned RENAME COLUMN column6 TO comparison;")
|
991 |
+
connect.sql("DELETE FROM mimic_cxr_sectioned WHERE study='study';")
|
992 |
+
|
993 |
+
splits = connect.sql("FROM mimic_cxr_2_0_0_split").df()
|
994 |
+
reports = connect.sql("FROM mimic_cxr_sectioned").df()
|
995 |
+
metadata = connect.sql("FROM mimic_cxr_2_0_0_metadata").df()
|
996 |
+
chexpert = connect.sql("FROM mimic_cxr_2_0_0_chexpert").df()
|
997 |
+
|
998 |
+
# Create datetime column:
|
999 |
+
metadata['StudyTime'] = metadata['StudyTime'].astype(int)
|
1000 |
+
metadata['study_datetime'] = pd.to_datetime(
|
1001 |
+
metadata.apply(lambda x: f'{x["StudyDate"]} {x["StudyTime"]:06}', axis=1),
|
1002 |
+
format='%Y%m%d %H%M%S',
|
1003 |
+
)
|
1004 |
+
reports.rename(columns={'study': 'study_id'}, inplace=True)
|
1005 |
+
reports.study_id = reports.study_id.str[1:].astype('int32')
|
1006 |
+
df = pd.merge(splits, reports, on='study_id')
|
1007 |
+
df = pd.merge(df, metadata, on=['dicom_id', 'study_id', 'subject_id'])
|
1008 |
+
df = pd.merge(df, chexpert, on=['study_id', 'subject_id'])
|
1009 |
+
|
1010 |
+
connect.sql(f"CREATE OR REPLACE TABLE mimic_cxr AS SELECT * FROM df")
|
1011 |
+
|
1012 |
+
# Create lookup tables (do this only for ED tables, as the MIMIC-CXR metadata table is not useful):
|
1013 |
+
for k, v in ed_module_tables.items():
|
1014 |
+
if v.load and v.index_columns:
|
1015 |
+
start_idx = 0
|
1016 |
+
for i in v.index_columns_source:
|
1017 |
+
lut_name = f'{k}_{i}_lut'
|
1018 |
+
table = k
|
1019 |
+
lut, end_idx = create_lookup_table(connect.sql(f"SELECT {i} FROM {table}").df(), [i], start_idx)
|
1020 |
+
start_idx = end_idx + 1
|
1021 |
+
lut = lut.rename(columns={'index': f'{i}_index'})
|
1022 |
+
|
1023 |
+
print(f'Creating {lut_name}...')
|
1024 |
+
|
1025 |
+
connect.sql(f"CREATE OR REPLACE TABLE {lut_name} AS SELECT * FROM lut")
|
1026 |
+
|
1027 |
+
if f'{i}_index' in connect.sql(f"FROM {k} LIMIT 0").df().columns:
|
1028 |
+
connect.sql(
|
1029 |
+
f"""
|
1030 |
+
ALTER TABLE {k}
|
1031 |
+
DROP COLUMN {i}_index;
|
1032 |
+
"""
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
connect.sql(
|
1036 |
+
f"""
|
1037 |
+
CREATE OR REPLACE TABLE {k} AS
|
1038 |
+
SELECT {k}.*, {lut_name}.{i}_index
|
1039 |
+
FROM {k} LEFT JOIN {lut_name}
|
1040 |
+
ON {k}.{i} = {lut_name}.{i}
|
1041 |
+
"""
|
1042 |
+
)
|
1043 |
+
|
1044 |
+
connect.sql(
|
1045 |
+
f"""
|
1046 |
+
CREATE TABLE IF NOT EXISTS lut_info (table_name VARCHAR PRIMARY KEY, start_index INT, end_index INT);
|
1047 |
+
INSERT OR REPLACE INTO lut_info VALUES ('{k}', {0}, {end_idx});
|
1048 |
+
"""
|
1049 |
+
)
|
1050 |
+
|
1051 |
+
table_studies = {
|
1052 |
+
'edstays': [],
|
1053 |
+
'triage': [],
|
1054 |
+
'medrecon': [],
|
1055 |
+
'vitalsign': [],
|
1056 |
+
'pyxis': [],
|
1057 |
+
}
|
1058 |
+
stay_id_tables = ['triage']
|
1059 |
+
stay_id_charttime_tables = ['medrecon', 'vitalsign', 'pyxis']
|
1060 |
+
|
1061 |
+
df = connect.sql(f"FROM mimic_cxr").df()
|
1062 |
+
|
1063 |
+
# DICOM identifiers can have different datetimes, so use most recent datetime for the study:
|
1064 |
+
df = df.sort_values(by='study_datetime', ascending=False)
|
1065 |
+
df = df.groupby('study_id').first().reset_index()
|
1066 |
+
|
1067 |
+
for _, row in tqdm(df.iterrows(), total=df.shape[0]):
|
1068 |
+
edstays = connect.sql(
|
1069 |
+
f"""
|
1070 |
+
SELECT stay_id, intime, outtime
|
1071 |
+
FROM edstays
|
1072 |
+
WHERE (subject_id = {row['subject_id']})
|
1073 |
+
AND intime < '{row['study_datetime']}'
|
1074 |
+
AND outtime > '{row['study_datetime']}';
|
1075 |
+
"""
|
1076 |
+
).df()
|
1077 |
+
|
1078 |
+
if len(edstays) > 0:
|
1079 |
+
|
1080 |
+
for i in edstays['stay_id'].to_list():
|
1081 |
+
table_studies['edstays'].append({'study_id': row['study_id'], 'stay_id': i})
|
1082 |
+
for j in stay_id_tables:
|
1083 |
+
table = connect.sql(
|
1084 |
+
f"""
|
1085 |
+
SELECT stay_id
|
1086 |
+
FROM {j}
|
1087 |
+
WHERE (stay_id = {i});
|
1088 |
+
"""
|
1089 |
+
).df()
|
1090 |
+
|
1091 |
+
for k in table['stay_id'].to_list():
|
1092 |
+
table_studies[j].append({'study_id': row['study_id'], 'stay_id': k})
|
1093 |
+
|
1094 |
+
for j in stay_id_charttime_tables:
|
1095 |
+
table = connect.sql(
|
1096 |
+
f"""
|
1097 |
+
SELECT stay_id
|
1098 |
+
FROM {j}
|
1099 |
+
WHERE (stay_id = {i})
|
1100 |
+
AND charttime < '{row['study_datetime']}';
|
1101 |
+
"""
|
1102 |
+
).df()
|
1103 |
+
|
1104 |
+
for k in table['stay_id'].to_list():
|
1105 |
+
table_studies[j].append({'study_id': row['study_id'], 'stay_id': k})
|
1106 |
+
|
1107 |
+
for k, v in table_studies.items():
|
1108 |
+
df = pd.DataFrame(v)
|
1109 |
+
df = df.drop_duplicates(subset=['study_id', 'stay_id'])
|
1110 |
+
connect.sql(f"CREATE TABLE {k}_study_ids AS SELECT * FROM df")
|
1111 |
+
|
1112 |
+
@staticmethod
|
1113 |
+
def get_dataset(split, transforms, database_path, mimic_cxr_jpg_dir, max_images_per_study=5):
|
1114 |
+
|
1115 |
+
records = EDCXRSubjectRecords(database_path=database_path, time_delta_map=lambda x: 1 / math.sqrt(x + 1))
|
1116 |
+
|
1117 |
+
dataset = StudyIDEDStayIDSubset(
|
1118 |
+
mimic_iv_duckdb_path=database_path,
|
1119 |
+
dataset_dir=mimic_cxr_jpg_dir,
|
1120 |
+
transforms=transforms,
|
1121 |
+
split=split,
|
1122 |
+
max_images_per_study=max_images_per_study,
|
1123 |
+
records=records,
|
1124 |
+
)
|
1125 |
+
print(f'No. of examples: {dataset.__len__()}.')
|
1126 |
+
print(
|
1127 |
+
f'No. of training dicom_ids, study_ids, & subject_ids: {dataset.num_dicom_ids},',
|
1128 |
+
f'{dataset.num_study_ids}, & {dataset.num_subject_ids}.',
|
1129 |
+
)
|
modelling_uniformer.py
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from functools import partial
|
3 |
+
from typing import Optional, Tuple, Union
|
4 |
+
from math import isqrt
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
9 |
+
from transformers import ViTConfig
|
10 |
+
from transformers.modeling_outputs import ModelOutput
|
11 |
+
from transformers.modeling_utils import PreTrainedModel
|
12 |
+
from transformers.utils import logging
|
13 |
+
|
14 |
+
logger = logging.get_logger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
layer_scale = False
|
18 |
+
init_value = 1e-6
|
19 |
+
|
20 |
+
|
21 |
+
class Mlp(nn.Module):
|
22 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
23 |
+
super().__init__()
|
24 |
+
out_features = out_features or in_features
|
25 |
+
hidden_features = hidden_features or in_features
|
26 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
27 |
+
self.act = act_layer()
|
28 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
29 |
+
self.drop = nn.Dropout(drop)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
x = self.fc1(x)
|
33 |
+
x = self.act(x)
|
34 |
+
x = self.drop(x)
|
35 |
+
x = self.fc2(x)
|
36 |
+
x = self.drop(x)
|
37 |
+
return x
|
38 |
+
|
39 |
+
|
40 |
+
class CMlp(nn.Module):
|
41 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
42 |
+
super().__init__()
|
43 |
+
out_features = out_features or in_features
|
44 |
+
hidden_features = hidden_features or in_features
|
45 |
+
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
|
46 |
+
self.act = act_layer()
|
47 |
+
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
|
48 |
+
self.drop = nn.Dropout(drop)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
x = self.fc1(x)
|
52 |
+
x = self.act(x)
|
53 |
+
x = self.drop(x)
|
54 |
+
x = self.fc2(x)
|
55 |
+
x = self.drop(x)
|
56 |
+
return x
|
57 |
+
|
58 |
+
|
59 |
+
class Attention(nn.Module):
|
60 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
61 |
+
super().__init__()
|
62 |
+
self.num_heads = num_heads
|
63 |
+
head_dim = dim // num_heads
|
64 |
+
self.scale = qk_scale or head_dim ** -0.5
|
65 |
+
|
66 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
67 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
68 |
+
self.proj = nn.Linear(dim, dim)
|
69 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
B, N, C = x.shape
|
73 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
74 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
75 |
+
|
76 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
77 |
+
attn = attn.softmax(dim=-1)
|
78 |
+
attn = self.attn_drop(attn)
|
79 |
+
|
80 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
81 |
+
x = self.proj(x)
|
82 |
+
x = self.proj_drop(x)
|
83 |
+
return x
|
84 |
+
|
85 |
+
|
86 |
+
class CBlock(nn.Module):
|
87 |
+
def __init__(self, dim, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU):
|
88 |
+
super().__init__()
|
89 |
+
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
|
90 |
+
self.norm1 = nn.BatchNorm2d(dim)
|
91 |
+
self.conv1 = nn.Conv2d(dim, dim, 1)
|
92 |
+
self.conv2 = nn.Conv2d(dim, dim, 1)
|
93 |
+
self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
|
94 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
95 |
+
self.norm2 = nn.BatchNorm2d(dim)
|
96 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
97 |
+
self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
x = x + self.pos_embed(x)
|
101 |
+
x = x + self.module_1(x)
|
102 |
+
x = x + self.module_2(x)
|
103 |
+
return x
|
104 |
+
|
105 |
+
def module_1(self, x):
|
106 |
+
x = self.norm1(x.to(dtype=self.norm1.weight.dtype)) # Won't autocast to the dtype of the parameters of nn.BatchNorm2d.
|
107 |
+
x = self.conv1(x)
|
108 |
+
x = self.attn(x)
|
109 |
+
x = self.conv2(x)
|
110 |
+
x = self.drop_path(x)
|
111 |
+
return x
|
112 |
+
|
113 |
+
def module_2(self, x):
|
114 |
+
x = self.norm2(x.to(dtype=self.norm2.weight.dtype)) # Won't autocast to the dtype of the parameters of nn.BatchNorm2d.
|
115 |
+
x = self.mlp(x)
|
116 |
+
x = self.drop_path(x)
|
117 |
+
return x
|
118 |
+
|
119 |
+
class SABlock(nn.Module):
|
120 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
121 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
122 |
+
super().__init__()
|
123 |
+
self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
|
124 |
+
self.norm1 = norm_layer(dim)
|
125 |
+
self.attn = Attention(
|
126 |
+
dim,
|
127 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
128 |
+
attn_drop=attn_drop, proj_drop=drop)
|
129 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
130 |
+
self.norm2 = norm_layer(dim)
|
131 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
132 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
133 |
+
global layer_scale
|
134 |
+
self.ls = layer_scale
|
135 |
+
if self.ls:
|
136 |
+
global init_value
|
137 |
+
print(f"Use layer_scale: {layer_scale}, init_values: {init_value}")
|
138 |
+
self.gamma_1 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)
|
139 |
+
self.gamma_2 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True)
|
140 |
+
|
141 |
+
def forward(self, x):
|
142 |
+
x = x + self.pos_embed(x)
|
143 |
+
B, N, H, W = x.shape
|
144 |
+
x = x.flatten(2).transpose(1, 2)
|
145 |
+
if self.ls:
|
146 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
|
147 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
148 |
+
else:
|
149 |
+
x = x + self.drop_path(self.attn(self.norm1(x)))
|
150 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
151 |
+
x = x.transpose(1, 2).reshape(B, N, H, W)
|
152 |
+
return x
|
153 |
+
|
154 |
+
|
155 |
+
class HeadEmbedding(nn.Module):
|
156 |
+
def __init__(self, in_channels, out_channels):
|
157 |
+
super(HeadEmbedding, self).__init__()
|
158 |
+
|
159 |
+
self.proj = nn.Sequential(
|
160 |
+
nn.Conv2d(in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
|
161 |
+
nn.BatchNorm2d(out_channels // 2),
|
162 |
+
nn.GELU(),
|
163 |
+
nn.Conv2d(out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
|
164 |
+
nn.BatchNorm2d(out_channels),
|
165 |
+
)
|
166 |
+
|
167 |
+
def forward(self, x):
|
168 |
+
x = self.proj(x)
|
169 |
+
return x
|
170 |
+
|
171 |
+
|
172 |
+
class MiddleEmbedding(nn.Module):
|
173 |
+
def __init__(self, in_channels, out_channels):
|
174 |
+
super(MiddleEmbedding, self).__init__()
|
175 |
+
|
176 |
+
self.proj = nn.Sequential(
|
177 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
|
178 |
+
nn.BatchNorm2d(out_channels),
|
179 |
+
)
|
180 |
+
|
181 |
+
def forward(self, x):
|
182 |
+
x = self.proj(x)
|
183 |
+
return x
|
184 |
+
|
185 |
+
|
186 |
+
class PatchEmbed(nn.Module):
|
187 |
+
def __init__(self, image_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
188 |
+
super().__init__()
|
189 |
+
image_size = to_2tuple(image_size)
|
190 |
+
patch_size = to_2tuple(patch_size)
|
191 |
+
num_patches_height = image_size[0] // patch_size[0]
|
192 |
+
num_patches_width = image_size[1] // patch_size[1]
|
193 |
+
num_patches = num_patches_height * num_patches_width
|
194 |
+
self.image_size = image_size
|
195 |
+
self.patch_size = patch_size
|
196 |
+
self.num_patches = num_patches
|
197 |
+
|
198 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
199 |
+
self.norm = nn.LayerNorm(embed_dim)
|
200 |
+
|
201 |
+
def forward(self, x):
|
202 |
+
_, _, H, W = x.shape
|
203 |
+
assert H == self.image_size[0] and W == self.image_size[1], \
|
204 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})."
|
205 |
+
x = self.proj(x)
|
206 |
+
B, _, H, W = x.shape
|
207 |
+
x = x.flatten(2).transpose(1, 2)
|
208 |
+
x = self.norm(x)
|
209 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
210 |
+
return x
|
211 |
+
|
212 |
+
|
213 |
+
class UniFormer(nn.Module):
|
214 |
+
def __init__(self, depth=[3, 4, 8, 3], image_size=224, in_chans=3, num_classes=1000, embed_dim=[64, 128, 320, 512],
|
215 |
+
head_dim=64, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, patch_size=[4, 2, 2, 2],
|
216 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., conv_stem=False, layer_norm_eps=1e-6, **kwargs):
|
217 |
+
super().__init__()
|
218 |
+
self.num_classes = num_classes
|
219 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
220 |
+
norm_layer = partial(nn.LayerNorm, eps=layer_norm_eps)
|
221 |
+
if conv_stem:
|
222 |
+
self.patch_embed1 = HeadEmbedding(in_channels=in_chans, out_channels=embed_dim[0])
|
223 |
+
self.patch_embed2 = MiddleEmbedding(in_channels=embed_dim[0], out_channels=embed_dim[1])
|
224 |
+
self.patch_embed3 = MiddleEmbedding(in_channels=embed_dim[1], out_channels=embed_dim[2])
|
225 |
+
self.patch_embed4 = MiddleEmbedding(in_channels=embed_dim[2], out_channels=embed_dim[3])
|
226 |
+
else:
|
227 |
+
self.patch_embed1 = PatchEmbed(
|
228 |
+
image_size=image_size, patch_size=patch_size[0], in_chans=in_chans, embed_dim=embed_dim[0])
|
229 |
+
self.patch_embed2 = PatchEmbed(
|
230 |
+
image_size=image_size // patch_size[0], patch_size=patch_size[1], in_chans=embed_dim[0], embed_dim=embed_dim[1])
|
231 |
+
self.patch_embed3 = PatchEmbed(
|
232 |
+
image_size=image_size // (patch_size[0]*patch_size[1]), patch_size=patch_size[2], in_chans=embed_dim[1], embed_dim=embed_dim[2])
|
233 |
+
self.patch_embed4 = PatchEmbed(
|
234 |
+
image_size=image_size // (patch_size[0]*patch_size[1]*patch_size[2]), patch_size=patch_size[3], in_chans=embed_dim[2], embed_dim=embed_dim[3])
|
235 |
+
|
236 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
237 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] # stochastic depth decay rule
|
238 |
+
num_heads = [dim // head_dim for dim in embed_dim]
|
239 |
+
self.blocks1 = nn.ModuleList([
|
240 |
+
CBlock(dim=embed_dim[0], mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i])
|
241 |
+
for i in range(depth[0])])
|
242 |
+
self.blocks2 = nn.ModuleList([
|
243 |
+
CBlock(dim=embed_dim[1], mlp_ratio=mlp_ratio, drop=drop_rate, drop_path=dpr[i+depth[0]])
|
244 |
+
for i in range(depth[1])])
|
245 |
+
self.blocks3 = nn.ModuleList([
|
246 |
+
SABlock(
|
247 |
+
dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
248 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer)
|
249 |
+
for i in range(depth[2])])
|
250 |
+
self.blocks4 = nn.ModuleList([
|
251 |
+
SABlock(
|
252 |
+
dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
253 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer)
|
254 |
+
for i in range(depth[3])])
|
255 |
+
self.norm = nn.BatchNorm2d(embed_dim[-1])
|
256 |
+
|
257 |
+
# Representation layer
|
258 |
+
if representation_size:
|
259 |
+
self.num_features = representation_size
|
260 |
+
self.pre_logits = nn.Sequential(OrderedDict([
|
261 |
+
('fc', nn.Linear(embed_dim, representation_size)),
|
262 |
+
('act', nn.Tanh())
|
263 |
+
]))
|
264 |
+
else:
|
265 |
+
self.pre_logits = nn.Identity()
|
266 |
+
|
267 |
+
def forward_features(self, x):
|
268 |
+
x = self.patch_embed1(x)
|
269 |
+
x = self.pos_drop(x)
|
270 |
+
for blk in self.blocks1:
|
271 |
+
x = blk(x)
|
272 |
+
x = self.patch_embed2(x)
|
273 |
+
for blk in self.blocks2:
|
274 |
+
x = blk(x)
|
275 |
+
x = self.patch_embed3(x)
|
276 |
+
for blk in self.blocks3:
|
277 |
+
x = blk(x)
|
278 |
+
x = self.patch_embed4(x)
|
279 |
+
for blk in self.blocks4:
|
280 |
+
x = blk(x)
|
281 |
+
x = self.norm(x.to(dtype=self.norm.weight.dtype)) # Won't autocast to the dtype of the parameters of nn.BatchNorm2d.
|
282 |
+
x = self.pre_logits(x)
|
283 |
+
return x
|
284 |
+
|
285 |
+
def forward(self, x):
|
286 |
+
x = self.forward_features(x)
|
287 |
+
return x
|
288 |
+
|
289 |
+
|
290 |
+
class UniFormerPreTrainedModel(PreTrainedModel):
|
291 |
+
"""
|
292 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
293 |
+
models.
|
294 |
+
"""
|
295 |
+
|
296 |
+
config_class = ViTConfig
|
297 |
+
base_model_prefix = "vit"
|
298 |
+
main_input_name = "pixel_values"
|
299 |
+
|
300 |
+
def _init_weights(self, m):
|
301 |
+
if isinstance(m, nn.Linear):
|
302 |
+
trunc_normal_(m.weight, std=.02)
|
303 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
304 |
+
nn.init.constant_(m.bias, 0)
|
305 |
+
elif isinstance(m, nn.LayerNorm):
|
306 |
+
nn.init.constant_(m.bias, 0)
|
307 |
+
nn.init.constant_(m.weight, 1.0)
|
308 |
+
|
309 |
+
|
310 |
+
class UniFormerProjectionHead(torch.nn.Module):
|
311 |
+
|
312 |
+
def __init__(self, config) -> None:
|
313 |
+
super().__init__()
|
314 |
+
|
315 |
+
# Layer normalisation before projection:
|
316 |
+
self.layer_norm = torch.nn.LayerNorm(config.embed_dim[-1], eps=config.layer_norm_eps)
|
317 |
+
|
318 |
+
# No bias as following layer normalisation with bias:
|
319 |
+
self.projection = torch.nn.Linear(config.embed_dim[-1], config.projection_size, bias=False)
|
320 |
+
|
321 |
+
|
322 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
323 |
+
x = self.layer_norm(x)
|
324 |
+
x = self.projection(x)
|
325 |
+
return x
|
326 |
+
|
327 |
+
|
328 |
+
class UniFormerModel(UniFormerPreTrainedModel):
|
329 |
+
def __init__(self, config):
|
330 |
+
super().__init__(config)
|
331 |
+
|
332 |
+
self.uniformer = UniFormer(**vars(config))
|
333 |
+
|
334 |
+
# Initialize weights and apply final processing:
|
335 |
+
self.post_init()
|
336 |
+
|
337 |
+
def forward(
|
338 |
+
self,
|
339 |
+
pixel_values: Optional[torch.Tensor] = None,
|
340 |
+
output_hidden_states: Optional[bool] = None,
|
341 |
+
return_dict: Optional[bool] = None,
|
342 |
+
) -> Union[Tuple, ModelOutput]:
|
343 |
+
|
344 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
345 |
+
|
346 |
+
last_hidden_state = self.uniformer(pixel_values)
|
347 |
+
|
348 |
+
# Flatten h x w:
|
349 |
+
last_hidden_state = torch.flatten(last_hidden_state, 2)
|
350 |
+
|
351 |
+
# Permute last hidden state:
|
352 |
+
last_hidden_state = torch.permute(last_hidden_state, [0, 2, 1])
|
353 |
+
|
354 |
+
# return last_hidden_state
|
355 |
+
if not return_dict:
|
356 |
+
return last_hidden_state
|
357 |
+
|
358 |
+
return ModelOutput(last_hidden_state=last_hidden_state)
|
359 |
+
|
360 |
+
|
361 |
+
class MultiUniFormerWithProjectionHead(UniFormerPreTrainedModel):
|
362 |
+
def __init__(self, config):
|
363 |
+
super().__init__(config)
|
364 |
+
|
365 |
+
self.uniformer = UniFormer(**vars(config))
|
366 |
+
self.projection_head = UniFormerProjectionHead(config)
|
367 |
+
|
368 |
+
# Initialize weights and apply final processing:
|
369 |
+
self.post_init()
|
370 |
+
|
371 |
+
def forward(
|
372 |
+
self,
|
373 |
+
pixel_values: Optional[torch.Tensor] = None,
|
374 |
+
output_hidden_states: Optional[bool] = None,
|
375 |
+
return_dict: Optional[bool] = None,
|
376 |
+
) -> Union[Tuple, ModelOutput]:
|
377 |
+
|
378 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
379 |
+
|
380 |
+
# Flatten the batch and study_id dimensions:
|
381 |
+
assert len(pixel_values.shape) == 5, 'pixel_values must be B, S, C, H, W, where S is the max number of images for a study in the batch.'
|
382 |
+
last_hidden_state = self.uniformer(pixel_values.view(-1, *pixel_values.shape[2:]))
|
383 |
+
# last_hidden_state = self.uniformer(pixel_values.flatten(start_dim=0, end_dim=1))
|
384 |
+
|
385 |
+
# Flatten h x w:
|
386 |
+
last_hidden_state = torch.flatten(last_hidden_state, 2)
|
387 |
+
|
388 |
+
# Project the features for each spatial position to the decoder's hidden size:
|
389 |
+
projection = self.projection_head(torch.permute(last_hidden_state, [0, 2, 1]))
|
390 |
+
|
391 |
+
# Concatenate the features for each chest X-ray:
|
392 |
+
projection = projection.view(pixel_values.shape[0], -1, projection.shape[-1])
|
393 |
+
|
394 |
+
# Derive the attention mask from the pixel values:
|
395 |
+
mask = (pixel_values[:, :, 0, 0, 0] != 0.0)[:, :, None]
|
396 |
+
attention_mask = torch.ones(
|
397 |
+
[projection.shape[0], pixel_values.shape[1], projection.shape[1] // pixel_values.shape[1]],
|
398 |
+
dtype=torch.long,
|
399 |
+
device=mask.device,
|
400 |
+
)
|
401 |
+
attention_mask = attention_mask * mask
|
402 |
+
attention_mask = attention_mask.view(attention_mask.shape[0], -1)
|
403 |
+
|
404 |
+
if not return_dict:
|
405 |
+
return projection
|
406 |
+
|
407 |
+
return ModelOutput(last_hidden_state=projection, attention_mask=attention_mask)
|
408 |
+
|
409 |
+
|
410 |
+
if __name__ == '__main__':
|
411 |
+
y = PatchEmbed()
|
412 |
+
y(torch.randn(2, 3, 224, 224))
|
records.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from collections import OrderedDict
|
5 |
+
from typing import Dict, List, Optional
|
6 |
+
|
7 |
+
import duckdb
|
8 |
+
import pandas as pd
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from .tables import ed_cxr_token_type_ids, ed_module_tables, mimic_cxr_tables
|
12 |
+
|
13 |
+
|
14 |
+
def mimic_cxr_text_path(dir, subject_id, study_id, ext='txt'):
|
15 |
+
return os.path.join(dir, 'p' + str(subject_id)[:2], 'p' + str(subject_id),
|
16 |
+
's' + str(study_id) + '.' + ext)
|
17 |
+
|
18 |
+
def format(text):
|
19 |
+
# Remove newline, tab, repeated whitespaces, and leading and trailing whitespaces:
|
20 |
+
text = re.sub(r'\n|\t', ' ', text)
|
21 |
+
text = re.sub(r'\s+', ' ', text)
|
22 |
+
text = text.strip()
|
23 |
+
return text
|
24 |
+
|
25 |
+
|
26 |
+
def rgetattr(obj, attr, *args):
|
27 |
+
def _getattr(obj, attr):
|
28 |
+
return getattr(obj, attr, *args)
|
29 |
+
return functools.reduce(_getattr, [obj] + attr.split('.'))
|
30 |
+
|
31 |
+
|
32 |
+
def df_to_tensor_index_columns(
|
33 |
+
df: pd.DataFrame,
|
34 |
+
tensor: torch.Tensor,
|
35 |
+
group_idx_to_y_idx: Dict,
|
36 |
+
groupby: str,
|
37 |
+
index_columns: List[str],
|
38 |
+
):
|
39 |
+
"""
|
40 |
+
Converts a dataframe with index columns to a tensor, where each index of the y-axis is determined by the
|
41 |
+
'groupby' column.
|
42 |
+
"""
|
43 |
+
assert len(group_idx_to_y_idx) == tensor.shape[0]
|
44 |
+
all_columns = index_columns + [groupby]
|
45 |
+
y_indices = [group_idx_to_y_idx[row[groupby]] for _, row in df[all_columns].iterrows() for i in index_columns if row[i] == row[i]]
|
46 |
+
x_indices = [row[i] for _, row in df[all_columns].iterrows() for i in index_columns if row[i] == row[i]]
|
47 |
+
tensor[y_indices, x_indices] = 1.0
|
48 |
+
return tensor
|
49 |
+
|
50 |
+
|
51 |
+
def df_to_tensor_value_columns(
|
52 |
+
df: pd.DataFrame,
|
53 |
+
tensor: torch.Tensor,
|
54 |
+
group_idx_to_y_idx: Dict,
|
55 |
+
groupby: str,
|
56 |
+
value_columns: List[str],
|
57 |
+
value_column_to_idx: Dict,
|
58 |
+
):
|
59 |
+
"""
|
60 |
+
Converts a dataframe with value columns to a tensor, where each index of the y-axis is determined by the
|
61 |
+
'groupby' column. The x-index is determined by a dictionary using the column name.
|
62 |
+
"""
|
63 |
+
assert len(group_idx_to_y_idx) == tensor.shape[0]
|
64 |
+
all_columns = value_columns + [groupby]
|
65 |
+
y_indices = [group_idx_to_y_idx[row[groupby]] for _, row in df[all_columns].iterrows() for i in value_columns if row[i] == row[i]]
|
66 |
+
x_indices = [value_column_to_idx[i] for _, row in df[all_columns].iterrows() for i in value_columns if row[i] == row[i]]
|
67 |
+
element_value = [row[i] for _, row in df[all_columns].iterrows() for i in value_columns if row[i] == row[i]]
|
68 |
+
tensor[y_indices, x_indices] = torch.tensor(element_value, dtype=tensor.dtype)
|
69 |
+
return tensor
|
70 |
+
|
71 |
+
|
72 |
+
class EDCXRSubjectRecords:
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
database_path: str,
|
76 |
+
dataset_dir: Optional[str] = None,
|
77 |
+
reports_dir: Optional[str] = None,
|
78 |
+
token_type_ids_starting_idx: Optional[int] = None,
|
79 |
+
time_delta_map = lambda x: x,
|
80 |
+
debug: bool = False
|
81 |
+
):
|
82 |
+
|
83 |
+
self.database_path = database_path
|
84 |
+
self.dataset_dir = dataset_dir
|
85 |
+
self.reports_dir = reports_dir
|
86 |
+
self.time_delta_map = time_delta_map
|
87 |
+
self.debug = debug
|
88 |
+
|
89 |
+
self.connect = duckdb.connect(self.database_path, read_only=True)
|
90 |
+
|
91 |
+
self.streamlit_flag = False
|
92 |
+
|
93 |
+
self.clear_start_end_times()
|
94 |
+
|
95 |
+
# Module configurations:
|
96 |
+
self.ed_module_tables = ed_module_tables
|
97 |
+
self.mimic_cxr_tables = mimic_cxr_tables
|
98 |
+
|
99 |
+
lut_info = self.connect.sql("FROM lut_info").df()
|
100 |
+
|
101 |
+
for k, v in (self.ed_module_tables | self.mimic_cxr_tables).items():
|
102 |
+
if v.load and (v.value_columns or v.index_columns):
|
103 |
+
v.value_column_to_idx = {}
|
104 |
+
if v.index_columns:
|
105 |
+
v.total_indices = lut_info[lut_info['table_name'] == k]['end_index'].item() + 1
|
106 |
+
else:
|
107 |
+
v.total_indices = 0
|
108 |
+
for i in v.value_columns:
|
109 |
+
v.value_column_to_idx[i] = v.total_indices
|
110 |
+
v.total_indices += 1
|
111 |
+
|
112 |
+
# Token type identifiers:
|
113 |
+
self.token_type_to_token_type_id = ed_cxr_token_type_ids
|
114 |
+
if token_type_ids_starting_idx is not None:
|
115 |
+
self.token_type_to_token_type_id = {k: v + token_type_ids_starting_idx for k, v in self.token_type_to_token_type_id.items()}
|
116 |
+
|
117 |
+
def __len__(self):
|
118 |
+
return len(self.subject_ids)
|
119 |
+
|
120 |
+
def clear_start_end_times(self):
|
121 |
+
self.start_time, self.end_time = None, None
|
122 |
+
|
123 |
+
def admission_ed_stay_ids(self, hadm_id):
|
124 |
+
if hadm_id:
|
125 |
+
return self.connect.sql(f'SELECT stay_id FROM edstays WHERE subject_id = {self.subject_id} AND hadm_id = {hadm_id}').df()['stay_id'].tolist()
|
126 |
+
else:
|
127 |
+
return self.connect.sql(f'SELECT stay_id FROM edstays WHERE subject_id = {self.subject_id}').df()['stay_id'].tolist()
|
128 |
+
|
129 |
+
def subject_study_ids(self):
|
130 |
+
mimic_cxr = self.connect.sql(
|
131 |
+
f'SELECT study_id, study_datetime FROM mimic_cxr WHERE subject_id = {self.subject_id}',
|
132 |
+
).df()
|
133 |
+
if self.start_time and self.end_time:
|
134 |
+
mimic_cxr = self.filter_admissions_by_time_span(mimic_cxr, 'study_datetime')
|
135 |
+
mimic_cxr = mimic_cxr.drop_duplicates(subset=['study_id']).sort_values(by='study_datetime')
|
136 |
+
return dict(zip(mimic_cxr['study_id'], mimic_cxr['study_datetime']))
|
137 |
+
|
138 |
+
def load_ed_module(self, hadm_id=None, stay_id=None, reference_time=None):
|
139 |
+
if not self.start_time and stay_id is not None:
|
140 |
+
edstay = self.connect.sql(
|
141 |
+
f"""
|
142 |
+
SELECT intime, outtime
|
143 |
+
FROM edstays
|
144 |
+
WHERE stay_id = {stay_id}
|
145 |
+
"""
|
146 |
+
).df()
|
147 |
+
self.start_time = edstay['intime'].item()
|
148 |
+
self.end_time = edstay['outtime'].item()
|
149 |
+
self.load_module(self.ed_module_tables, hadm_id=hadm_id, stay_id=stay_id, reference_time=reference_time)
|
150 |
+
|
151 |
+
def load_mimic_cxr(self, study_id, reference_time=None):
|
152 |
+
self.load_module(self.mimic_cxr_tables, study_id=study_id, reference_time=reference_time)
|
153 |
+
if self.streamlit_flag:
|
154 |
+
self.report_path = mimic_cxr_text_path(self.reports_dir, self.subject_id, study_id, 'txt')
|
155 |
+
|
156 |
+
def load_module(self, module_dict, hadm_id=None, stay_id=None, study_id=None, reference_time=None):
|
157 |
+
for k, v in module_dict.items():
|
158 |
+
|
159 |
+
if self.streamlit_flag or v.load:
|
160 |
+
|
161 |
+
query = f"FROM {k}"
|
162 |
+
|
163 |
+
conditions = []
|
164 |
+
if hasattr(self, 'subject_id') and v.subject_id_filter:
|
165 |
+
conditions.append(f"subject_id={self.subject_id}")
|
166 |
+
if v.hadm_id_filter:
|
167 |
+
assert hadm_id is not None
|
168 |
+
conditions.append(f"hadm_id={hadm_id}")
|
169 |
+
if v.stay_id_filter:
|
170 |
+
assert stay_id is not None
|
171 |
+
conditions.append(f"stay_id={stay_id}")
|
172 |
+
if v.study_id_filter:
|
173 |
+
assert study_id is not None
|
174 |
+
conditions.append(f"study_id={study_id}")
|
175 |
+
if v.mimic_cxr_sectioned:
|
176 |
+
assert study_id is not None
|
177 |
+
conditions.append(f"study='s{study_id}'")
|
178 |
+
ands = ['AND'] * (len(conditions) * 2 - 1)
|
179 |
+
ands[0::2] = conditions
|
180 |
+
|
181 |
+
if conditions:
|
182 |
+
query += " WHERE ("
|
183 |
+
query += ' '.join(ands)
|
184 |
+
query += ")"
|
185 |
+
|
186 |
+
df = self.connect.sql(query).df()
|
187 |
+
|
188 |
+
if v.load:
|
189 |
+
|
190 |
+
columns = [v.groupby] + v.time_columns + v.index_columns + v.text_columns + v.value_columns + v.target_sections
|
191 |
+
|
192 |
+
# Use the starting time of the stay/admission as the time:
|
193 |
+
if v.use_start_time:
|
194 |
+
df['start_time'] = self.start_time
|
195 |
+
columns += ['start_time']
|
196 |
+
|
197 |
+
if reference_time is not None:
|
198 |
+
time_column = v.time_columns[-1] if not v.use_start_time else 'start_time'
|
199 |
+
|
200 |
+
# Remove rows that are after the reference time to maintain causality:
|
201 |
+
df = df[df[time_column] < reference_time]
|
202 |
+
|
203 |
+
if self.streamlit_flag:
|
204 |
+
setattr(self, k, df)
|
205 |
+
|
206 |
+
if v.load:
|
207 |
+
columns = list(dict.fromkeys(columns)) # remove repetitions.
|
208 |
+
df = df.drop(columns=df.columns.difference(columns), axis=1)
|
209 |
+
setattr(self, f'{k}_feats', df)
|
210 |
+
|
211 |
+
def return_ed_module_features(self, stay_id, reference_time=None):
|
212 |
+
example_dict = {}
|
213 |
+
if stay_id is not None:
|
214 |
+
self.load_ed_module(stay_id=stay_id, reference_time=reference_time)
|
215 |
+
for k, v in self.ed_module_tables.items():
|
216 |
+
if v.load:
|
217 |
+
|
218 |
+
df = getattr(self, f'{k}_feats')
|
219 |
+
|
220 |
+
if self.debug:
|
221 |
+
example_dict.setdefault('ed_tables', []).append(k)
|
222 |
+
|
223 |
+
if not df.empty:
|
224 |
+
|
225 |
+
assert f'{k}_index_value_feats' not in example_dict
|
226 |
+
|
227 |
+
# The y-index and the time for each group:
|
228 |
+
time_column = v.time_columns[-1] if not v.use_start_time else 'start_time'
|
229 |
+
group_idx_to_y_idx, group_idx_to_datetime = OrderedDict(), OrderedDict()
|
230 |
+
groups = df.dropna(subset=v.index_columns + v.value_columns + v.text_columns, axis=0, how='all')
|
231 |
+
groups = groups.drop_duplicates(subset=[v.groupby])[list(dict.fromkeys([v.groupby, time_column]))]
|
232 |
+
groups = groups.reset_index(drop=True)
|
233 |
+
for i, row in groups.iterrows():
|
234 |
+
group_idx_to_y_idx[row[v.groupby]] = i
|
235 |
+
group_idx_to_datetime[row[v.groupby]] = row[time_column]
|
236 |
+
|
237 |
+
if (v.index_columns or v.value_columns) and group_idx_to_y_idx:
|
238 |
+
example_dict[f'{k}_index_value_feats'] = torch.zeros(len(group_idx_to_y_idx), v.total_indices)
|
239 |
+
if v.index_columns:
|
240 |
+
example_dict[f'{k}_index_value_feats'] = df_to_tensor_index_columns(
|
241 |
+
df=df,
|
242 |
+
tensor=example_dict[f'{k}_index_value_feats'],
|
243 |
+
group_idx_to_y_idx=group_idx_to_y_idx,
|
244 |
+
groupby=v.groupby,
|
245 |
+
index_columns=v.index_columns,
|
246 |
+
)
|
247 |
+
if v.value_columns:
|
248 |
+
example_dict[f'{k}_index_value_feats'] = df_to_tensor_value_columns(
|
249 |
+
df=df,
|
250 |
+
tensor=example_dict[f'{k}_index_value_feats'],
|
251 |
+
group_idx_to_y_idx=group_idx_to_y_idx,
|
252 |
+
groupby=v.groupby,
|
253 |
+
value_columns=v.value_columns,
|
254 |
+
value_column_to_idx=v.value_column_to_idx
|
255 |
+
)
|
256 |
+
|
257 |
+
example_dict[f'{k}_index_value_token_type_ids'] = torch.full(
|
258 |
+
[example_dict[f'{k}_index_value_feats'].shape[0]],
|
259 |
+
self.token_type_to_token_type_id[k],
|
260 |
+
dtype=torch.long,
|
261 |
+
)
|
262 |
+
|
263 |
+
event_times = list(group_idx_to_datetime.values())
|
264 |
+
assert all([i == i for i in event_times])
|
265 |
+
time_delta = [self.compute_time_delta(i, reference_time) for i in event_times]
|
266 |
+
example_dict[f'{k}_index_value_time_delta'] = torch.tensor(time_delta)[:, None]
|
267 |
+
|
268 |
+
assert example_dict[f'{k}_index_value_feats'].shape[0] == example_dict[f'{k}_index_value_time_delta'].shape[0]
|
269 |
+
|
270 |
+
if v.text_columns:
|
271 |
+
for j in group_idx_to_y_idx.keys():
|
272 |
+
group_text = df[df[v.groupby] == j]
|
273 |
+
for i in v.text_columns:
|
274 |
+
|
275 |
+
column_text = [format(k) for k in list(dict.fromkeys(group_text[i].tolist())) if k is not None]
|
276 |
+
|
277 |
+
if column_text:
|
278 |
+
|
279 |
+
example_dict.setdefault(f'{k}_{i}', []).append(f"{', '.join(column_text)}.")
|
280 |
+
|
281 |
+
event_times = group_text[time_column].iloc[0]
|
282 |
+
time_delta = self.compute_time_delta(event_times, reference_time, to_tensor=False)
|
283 |
+
example_dict.setdefault(f'{k}_{i}_time_delta', []).append(time_delta)
|
284 |
+
|
285 |
+
return example_dict
|
286 |
+
|
287 |
+
def return_mimic_cxr_features(self, study_id, reference_time=None):
|
288 |
+
example_dict = {}
|
289 |
+
if study_id is not None:
|
290 |
+
self.load_mimic_cxr(study_id=study_id, reference_time=reference_time)
|
291 |
+
for k, v in self.mimic_cxr_tables.items():
|
292 |
+
if v.load:
|
293 |
+
|
294 |
+
df = getattr(self, f'{k}_feats')
|
295 |
+
|
296 |
+
if self.debug:
|
297 |
+
example_dict.setdefault('mimic_cxr_inputs', []).append(k)
|
298 |
+
|
299 |
+
if not df.empty:
|
300 |
+
|
301 |
+
# The y-index for each group:
|
302 |
+
group_idx_to_y_idx = OrderedDict()
|
303 |
+
groups = df.dropna(
|
304 |
+
subset=v.index_columns + v.value_columns + v.text_columns + v.target_sections,
|
305 |
+
axis=0,
|
306 |
+
how='all'
|
307 |
+
)
|
308 |
+
groups = groups.drop_duplicates(subset=[v.groupby])[[v.groupby]]
|
309 |
+
groups = groups.reset_index(drop=True)
|
310 |
+
for i, row in groups.iterrows():
|
311 |
+
group_idx_to_y_idx[row[v.groupby]] = i
|
312 |
+
|
313 |
+
if v.index_columns and group_idx_to_y_idx:
|
314 |
+
|
315 |
+
example_dict[f'{k}_index_value_feats'] = torch.zeros(len(group_idx_to_y_idx), v.total_indices)
|
316 |
+
if v.index_columns:
|
317 |
+
example_dict[f'{k}_index_value_feats'] = df_to_tensor_index_columns(
|
318 |
+
df=df,
|
319 |
+
tensor=example_dict[f'{k}_index_value_feats'],
|
320 |
+
group_idx_to_y_idx=group_idx_to_y_idx,
|
321 |
+
groupby=v.groupby,
|
322 |
+
index_columns=v.index_columns,
|
323 |
+
)
|
324 |
+
|
325 |
+
example_dict[f'{k}_index_value_token_type_ids'] = torch.full(
|
326 |
+
[example_dict[f'{k}_index_value_feats'].shape[0]],
|
327 |
+
self.token_type_to_token_type_id[k],
|
328 |
+
dtype=torch.long,
|
329 |
+
)
|
330 |
+
|
331 |
+
if v.text_columns:
|
332 |
+
for j in group_idx_to_y_idx.keys():
|
333 |
+
group_text = df[df[v.groupby] == j]
|
334 |
+
for i in v.text_columns:
|
335 |
+
column_text = [format(k) for k in list(dict.fromkeys(group_text[i].tolist())) if k is not None]
|
336 |
+
if column_text:
|
337 |
+
example_dict.setdefault(f'{i}', []).append(f"{', '.join(column_text)}.")
|
338 |
+
|
339 |
+
if v.target_sections:
|
340 |
+
for j in group_idx_to_y_idx.keys():
|
341 |
+
group_text = df[df[v.groupby] == j]
|
342 |
+
for i in v.target_sections:
|
343 |
+
column_text = [format(k) for k in list(dict.fromkeys(group_text[i].tolist())) if k is not None]
|
344 |
+
assert len(column_text) == 1
|
345 |
+
example_dict[i] = column_text[-1]
|
346 |
+
|
347 |
+
return example_dict
|
348 |
+
|
349 |
+
def compute_time_delta(self, event_time, reference_time, denominator = 3600, to_tensor=True):
|
350 |
+
"""
|
351 |
+
How to we transform time-delta inputs? It appears that minutes are used as the input to
|
352 |
+
a weight matrix in "Self-Supervised Transformer for Sparse and Irregularly Sampled Multivariate
|
353 |
+
Clinical Time-Series". This is almost confirmed by the CVE class defined here:
|
354 |
+
https://github.com/sindhura97/STraTS/blob/main/strats_notebook.ipynb, where the input has
|
355 |
+
a size of one.
|
356 |
+
"""
|
357 |
+
time_delta = reference_time - event_time
|
358 |
+
time_delta = time_delta.total_seconds() / (denominator)
|
359 |
+
assert isinstance(time_delta, float), f'time_delta should be float, not {type(time_delta)}.'
|
360 |
+
if time_delta < 0:
|
361 |
+
raise ValueError(f'time_delta should be greater than or equal to zero, not {time_delta}.')
|
362 |
+
time_delta = self.time_delta_map(time_delta)
|
363 |
+
if to_tensor:
|
364 |
+
time_delta = torch.tensor(time_delta)
|
365 |
+
return time_delta
|
366 |
+
|
367 |
+
def filter_admissions_by_time_span(self, df, time_column):
|
368 |
+
return df[(df[time_column] > self.start_time) & (df[time_column] <= self.end_time)]
|
369 |
+
|
tables.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
ed_cxr_token_type_ids = {
|
5 |
+
'medrecon': 0,
|
6 |
+
'edstays': 1,
|
7 |
+
'triage': 2,
|
8 |
+
'vitalsign': 3,
|
9 |
+
'pyxis': 4,
|
10 |
+
'mimic_cxr_2_0_0_metadata': 5,
|
11 |
+
'medrecon_name': 6,
|
12 |
+
'triage_chiefcomplaint': 7,
|
13 |
+
'triage_pain': 8,
|
14 |
+
'vitalsign_pain': 9,
|
15 |
+
'indication': 10,
|
16 |
+
'history': 11,
|
17 |
+
'findings': 12,
|
18 |
+
'impression': 13,
|
19 |
+
'image': 14,
|
20 |
+
'comparison': 15,
|
21 |
+
'previous_findings': 16,
|
22 |
+
'previous_impression': 17,
|
23 |
+
'previous_image': 18,
|
24 |
+
}
|
25 |
+
|
26 |
+
NUM_ED_CXR_TOKEN_TYPE_IDS = max(ed_cxr_token_type_ids.values()) + 1
|
27 |
+
|
28 |
+
|
29 |
+
class TableConfig:
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
name: str,
|
33 |
+
hadm_id_filter: bool = False,
|
34 |
+
stay_id_filter: bool = False,
|
35 |
+
study_id_filter: bool = False,
|
36 |
+
subject_id_filter: bool = True,
|
37 |
+
load: Optional[bool] = None,
|
38 |
+
groupby: Optional[str] = None,
|
39 |
+
index_columns: list = [],
|
40 |
+
text_columns: list = [],
|
41 |
+
value_columns: list = [],
|
42 |
+
time_columns: list = [],
|
43 |
+
target_sections: list = [],
|
44 |
+
use_start_time: bool = False,
|
45 |
+
mimic_cxr_sectioned: bool = False,
|
46 |
+
):
|
47 |
+
self.name = name
|
48 |
+
self.hadm_id_filter = hadm_id_filter
|
49 |
+
self.stay_id_filter = stay_id_filter
|
50 |
+
self.study_id_filter = study_id_filter
|
51 |
+
self.subject_id_filter = subject_id_filter
|
52 |
+
self.load = load
|
53 |
+
self.groupby = groupby
|
54 |
+
self.index_columns_source = [index_columns] if isinstance(index_columns, str) else index_columns
|
55 |
+
self.index_columns = [f'{i}_index' for i in self.index_columns_source]
|
56 |
+
self.text_columns = [text_columns] if isinstance(text_columns, str) else text_columns
|
57 |
+
self.value_columns = [value_columns] if isinstance(value_columns, str) else value_columns
|
58 |
+
self.time_columns = [time_columns] if isinstance(time_columns, str) else time_columns
|
59 |
+
self.target_sections = [target_sections] if isinstance(target_sections, str) else target_sections
|
60 |
+
self.use_start_time = use_start_time
|
61 |
+
self.mimic_cxr_sectioned = mimic_cxr_sectioned
|
62 |
+
|
63 |
+
assert self.time_columns is None or isinstance(self.time_columns, list)
|
64 |
+
|
65 |
+
self.value_column_to_idx = {}
|
66 |
+
self.total_indices = None
|
67 |
+
|
68 |
+
|
69 |
+
# ed module:
|
70 |
+
"""
|
71 |
+
Order the tables for position_ids based on their order of occurance (for cases where their time deltas are matching).
|
72 |
+
The way that they are ordered here is the way that they will be ordered as input.
|
73 |
+
|
74 |
+
1. medrecon - the medications which the patient was taking prior to their ED stay.
|
75 |
+
2. edstays - patient stays are tracked in the edstays table.
|
76 |
+
3. triage - information collected from the patient at the time of triage.
|
77 |
+
4. vitalsign - aperiodic vital signs documented for patients during their stay.
|
78 |
+
5. pyxis - dispensation information for medications provided by the BD Pyxis MedStation (position is interchangable with 4).
|
79 |
+
"""
|
80 |
+
ed_module_tables = OrderedDict(
|
81 |
+
{
|
82 |
+
'medrecon': TableConfig(
|
83 |
+
'Medicine reconciliation',
|
84 |
+
stay_id_filter=True,
|
85 |
+
load=True,
|
86 |
+
index_columns=['gsn', 'ndc', 'etc_rn', 'etccode'],
|
87 |
+
text_columns='name',
|
88 |
+
groupby='stay_id',
|
89 |
+
use_start_time=True,
|
90 |
+
),
|
91 |
+
'edstays': TableConfig(
|
92 |
+
'ED admissions',
|
93 |
+
stay_id_filter=True,
|
94 |
+
load=True,
|
95 |
+
index_columns=['gender', 'race', 'arrival_transport'],
|
96 |
+
groupby='stay_id',
|
97 |
+
time_columns='intime',
|
98 |
+
),
|
99 |
+
'triage': TableConfig(
|
100 |
+
'Triage',
|
101 |
+
stay_id_filter=True,
|
102 |
+
load=True,
|
103 |
+
text_columns=['chiefcomplaint', 'pain'],
|
104 |
+
value_columns=['temperature', 'heartrate', 'resprate', 'o2sat', 'sbp', 'dbp', 'acuity'],
|
105 |
+
groupby='stay_id',
|
106 |
+
use_start_time=True,
|
107 |
+
),
|
108 |
+
'vitalsign': TableConfig(
|
109 |
+
'Aperiodic vital signs',
|
110 |
+
stay_id_filter=True,
|
111 |
+
load=True,
|
112 |
+
index_columns=['rhythm'],
|
113 |
+
text_columns=['pain'],
|
114 |
+
value_columns=['temperature', 'heartrate', 'resprate', 'o2sat', 'sbp', 'dbp'],
|
115 |
+
groupby='charttime',
|
116 |
+
time_columns='charttime',
|
117 |
+
),
|
118 |
+
'pyxis': TableConfig(
|
119 |
+
'Dispensation information for medications provided by the BD Pyxis MedStation',
|
120 |
+
stay_id_filter=True,
|
121 |
+
load=True,
|
122 |
+
index_columns=['med_rn', 'name', 'gsn_rn', 'gsn'],
|
123 |
+
groupby='charttime',
|
124 |
+
time_columns='charttime',
|
125 |
+
),
|
126 |
+
'diagnosis': TableConfig('Diagnosis', stay_id_filter=True, hadm_id_filter=False),
|
127 |
+
}
|
128 |
+
)
|
129 |
+
|
130 |
+
# MIMIC-CXR module:
|
131 |
+
mimic_cxr_tables = OrderedDict(
|
132 |
+
{
|
133 |
+
'mimic_cxr_2_0_0_metadata': TableConfig(
|
134 |
+
'Metadata',
|
135 |
+
study_id_filter=True,
|
136 |
+
load=True,
|
137 |
+
index_columns=[
|
138 |
+
'PerformedProcedureStepDescription',
|
139 |
+
'ViewPosition',
|
140 |
+
'ProcedureCodeSequence_CodeMeaning',
|
141 |
+
'ViewCodeSequence_CodeMeaning',
|
142 |
+
'PatientOrientationCodeSequence_CodeMeaning',
|
143 |
+
],
|
144 |
+
groupby='study_id',
|
145 |
+
),
|
146 |
+
'mimic_cxr_sectioned': TableConfig(
|
147 |
+
'Report sections',
|
148 |
+
mimic_cxr_sectioned=True,
|
149 |
+
subject_id_filter=False,
|
150 |
+
load=True,
|
151 |
+
groupby='study',
|
152 |
+
text_columns=['indication', 'history', 'comparison'],
|
153 |
+
target_sections=['findings', 'impression'],
|
154 |
+
),
|
155 |
+
'mimic_cxr_2_0_0_chexpert': TableConfig('CheXpert', study_id_filter=True),
|
156 |
+
'mimic_cxr_2_0_0_split': TableConfig('Split', study_id_filter=True),
|
157 |
+
}
|
158 |
+
)
|
159 |
+
|