modelofinenew

This model is a fine-tuned version of projecte-aina/roberta-base-ca-v2-cased-te on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2185
  • Accuracy: 0.5126
  • F1: 0.5338

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 20
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.9546 1.6129 50 2.5028 0.2101 0.2019
1.7901 3.2258 100 2.6787 0.1849 0.1805
1.6177 4.8387 150 2.3416 0.3445 0.3332
1.2977 6.4516 200 2.0729 0.4202 0.4060
0.9411 8.0645 250 1.9746 0.4706 0.4583
0.595 9.6774 300 1.8840 0.5126 0.5167
0.3374 11.2903 350 1.8955 0.4958 0.4977
0.1974 12.9032 400 1.9658 0.5378 0.5169
0.0981 14.5161 450 2.2185 0.5126 0.5338
0.05 16.1290 500 2.3554 0.5042 0.5096
0.0312 17.7419 550 2.4366 0.5294 0.5289
0.0235 19.3548 600 2.5235 0.5210 0.5181
0.0194 20.9677 650 2.5713 0.5294 0.5289
0.0166 22.5806 700 2.6188 0.5294 0.5289
0.0148 24.1935 750 2.6473 0.5294 0.5289
0.0136 25.8065 800 2.6742 0.5210 0.5218
0.013 27.4194 850 2.6920 0.5210 0.5218
0.0129 29.0323 900 2.6961 0.5210 0.5218

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
20
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adriansanz/modelofinenew

Finetuned
(30)
this model