SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("adriansanz/sqv-v5-10ep")
sentences = [
'Aquest tipus de transmissió entre cedent i cessionari només podrà ser de caràcter gratuït i no condicionada.',
'Quin és el caràcter de la transmissió de drets funeraris entre cedent i cessionari?',
'Quin és el propòsit de la Deixalleria municipal?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0478 |
cosine_accuracy@3 |
0.2087 |
cosine_accuracy@5 |
0.3087 |
cosine_accuracy@10 |
0.5565 |
cosine_precision@1 |
0.0478 |
cosine_precision@3 |
0.0696 |
cosine_precision@5 |
0.0617 |
cosine_precision@10 |
0.0557 |
cosine_recall@1 |
0.0478 |
cosine_recall@3 |
0.2087 |
cosine_recall@5 |
0.3087 |
cosine_recall@10 |
0.5565 |
cosine_ndcg@10 |
0.2589 |
cosine_mrr@10 |
0.1696 |
cosine_map@100 |
0.1876 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0609 |
cosine_accuracy@3 |
0.213 |
cosine_accuracy@5 |
0.3043 |
cosine_accuracy@10 |
0.5565 |
cosine_precision@1 |
0.0609 |
cosine_precision@3 |
0.071 |
cosine_precision@5 |
0.0609 |
cosine_precision@10 |
0.0557 |
cosine_recall@1 |
0.0609 |
cosine_recall@3 |
0.213 |
cosine_recall@5 |
0.3043 |
cosine_recall@10 |
0.5565 |
cosine_ndcg@10 |
0.2638 |
cosine_mrr@10 |
0.176 |
cosine_map@100 |
0.1934 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0783 |
cosine_accuracy@3 |
0.2174 |
cosine_accuracy@5 |
0.3435 |
cosine_accuracy@10 |
0.5696 |
cosine_precision@1 |
0.0783 |
cosine_precision@3 |
0.0725 |
cosine_precision@5 |
0.0687 |
cosine_precision@10 |
0.057 |
cosine_recall@1 |
0.0783 |
cosine_recall@3 |
0.2174 |
cosine_recall@5 |
0.3435 |
cosine_recall@10 |
0.5696 |
cosine_ndcg@10 |
0.2812 |
cosine_mrr@10 |
0.1947 |
cosine_map@100 |
0.2122 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0522 |
cosine_accuracy@3 |
0.2087 |
cosine_accuracy@5 |
0.3174 |
cosine_accuracy@10 |
0.513 |
cosine_precision@1 |
0.0522 |
cosine_precision@3 |
0.0696 |
cosine_precision@5 |
0.0635 |
cosine_precision@10 |
0.0513 |
cosine_recall@1 |
0.0522 |
cosine_recall@3 |
0.2087 |
cosine_recall@5 |
0.3174 |
cosine_recall@10 |
0.513 |
cosine_ndcg@10 |
0.2483 |
cosine_mrr@10 |
0.1679 |
cosine_map@100 |
0.1893 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0565 |
cosine_accuracy@3 |
0.2261 |
cosine_accuracy@5 |
0.3261 |
cosine_accuracy@10 |
0.5435 |
cosine_precision@1 |
0.0565 |
cosine_precision@3 |
0.0754 |
cosine_precision@5 |
0.0652 |
cosine_precision@10 |
0.0543 |
cosine_recall@1 |
0.0565 |
cosine_recall@3 |
0.2261 |
cosine_recall@5 |
0.3261 |
cosine_recall@10 |
0.5435 |
cosine_ndcg@10 |
0.2661 |
cosine_mrr@10 |
0.182 |
cosine_map@100 |
0.2004 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.0565 |
cosine_accuracy@3 |
0.2174 |
cosine_accuracy@5 |
0.3174 |
cosine_accuracy@10 |
0.5435 |
cosine_precision@1 |
0.0565 |
cosine_precision@3 |
0.0725 |
cosine_precision@5 |
0.0635 |
cosine_precision@10 |
0.0543 |
cosine_recall@1 |
0.0565 |
cosine_recall@3 |
0.2174 |
cosine_recall@5 |
0.3174 |
cosine_recall@10 |
0.5435 |
cosine_ndcg@10 |
0.2641 |
cosine_mrr@10 |
0.1797 |
cosine_map@100 |
0.1971 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,520 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 5 tokens
- mean: 43.78 tokens
- max: 117 tokens
|
- min: 9 tokens
- mean: 20.5 tokens
- max: 51 tokens
|
- Samples:
positive |
anchor |
L’Ajuntament vol crear un banc de recursos on recollir tots els oferiments de la població i que servirà per atendre les necessitats de les famílies refugiades acollides al poble. |
Quin és el paper de l’Ajuntament en la integració de les persones refugiades acollides? |
Aquest tipus d'actuació requereix la intervenció d'una persona tècnica competent que subscrigui el projecte o la documentació tècnica corresponent i que assumeixi la direcció facultativa de l'execució de les obres. |
Quin és el requisit per a la intervenció d'una persona tècnica competent en les obres d'intervenció parcial interior en edificis amb elements catalogats? |
Aquest títol, adreçat a persones empadronades a Sant Quirze del Vallès, es concedirà segons el nivell d’ingressos, la condició d’edat o de discapacitat, en base als criteris específics que recull l’ordenança reguladora del sistema de tarifació social del transport públic municipal en autobús a Sant Quirze del Vallès. |
Quin és el benefici de la TBUS GRATUÏTA per a les persones majors? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 10
lr_scheduler_type
: cosine
warmup_ratio
: 0.2
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 10
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.2
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
eval_use_gather_object
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_1024_cosine_map@100 |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.4638 |
10 |
4.0375 |
- |
- |
- |
- |
- |
- |
0.9275 |
20 |
3.2095 |
- |
- |
- |
- |
- |
- |
0.9739 |
21 |
- |
0.1772 |
0.1818 |
0.1967 |
0.1911 |
0.1417 |
0.1750 |
1.3913 |
30 |
2.1843 |
- |
- |
- |
- |
- |
- |
1.8551 |
40 |
1.6095 |
- |
- |
- |
- |
- |
- |
1.9942 |
43 |
- |
0.1889 |
0.1676 |
0.1961 |
0.1969 |
0.1834 |
0.1899 |
2.3188 |
50 |
1.2099 |
- |
- |
- |
- |
- |
- |
2.7826 |
60 |
0.909 |
- |
- |
- |
- |
- |
- |
2.9681 |
64 |
- |
0.1998 |
0.1977 |
0.2164 |
0.2030 |
0.1972 |
0.2156 |
3.2464 |
70 |
0.7534 |
- |
- |
- |
- |
- |
- |
3.7101 |
80 |
0.6339 |
- |
- |
- |
- |
- |
- |
3.9884 |
86 |
- |
0.2049 |
0.2024 |
0.1989 |
0.1935 |
0.2046 |
0.1949 |
4.1739 |
90 |
0.5423 |
- |
- |
- |
- |
- |
- |
4.6377 |
100 |
0.5135 |
- |
- |
- |
- |
- |
- |
4.9623 |
107 |
- |
0.1967 |
0.2199 |
0.1892 |
0.2113 |
0.1957 |
0.2037 |
5.1014 |
110 |
0.4563 |
- |
- |
- |
- |
- |
- |
5.5652 |
120 |
0.3837 |
- |
- |
- |
- |
- |
- |
5.9826 |
129 |
- |
0.2026 |
0.1898 |
0.1903 |
0.2035 |
0.2034 |
0.2187 |
6.0290 |
130 |
0.3991 |
- |
- |
- |
- |
- |
- |
6.4928 |
140 |
0.3996 |
- |
- |
- |
- |
- |
- |
6.9565 |
150 |
0.3225 |
0.2053 |
0.1866 |
0.2046 |
0.2083 |
0.1822 |
0.2086 |
7.4203 |
160 |
0.3407 |
- |
- |
- |
- |
- |
- |
7.8841 |
170 |
0.2982 |
- |
- |
- |
- |
- |
- |
7.9768 |
172 |
- |
0.2092 |
0.2197 |
0.2005 |
0.2178 |
0.2063 |
0.2042 |
8.3478 |
180 |
0.3169 |
- |
- |
- |
- |
- |
- |
8.8116 |
190 |
0.2799 |
- |
- |
- |
- |
- |
- |
8.9971 |
194 |
- |
0.2053 |
0.2215 |
0.1929 |
0.2191 |
0.2106 |
0.2170 |
9.2754 |
200 |
0.312 |
- |
- |
- |
- |
- |
- |
9.7391 |
210 |
0.2684 |
0.1876 |
0.2004 |
0.1893 |
0.2122 |
0.1971 |
0.1934 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}