Xegho.30.4
This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1814
- Bleu: 87.4768
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 121
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu |
---|---|---|---|---|
No log | 1.19 | 100 | 1.2331 | 23.9598 |
No log | 2.38 | 200 | 0.7943 | 39.0191 |
No log | 3.57 | 300 | 0.5889 | 42.0816 |
No log | 4.76 | 400 | 0.4595 | 47.6986 |
1.0058 | 5.95 | 500 | 0.3801 | 49.9630 |
1.0058 | 7.14 | 600 | 0.3209 | 50.4290 |
1.0058 | 8.33 | 700 | 0.2848 | 51.1531 |
1.0058 | 9.52 | 800 | 0.2544 | 54.0631 |
1.0058 | 10.71 | 900 | 0.2338 | 56.3553 |
0.3559 | 11.9 | 1000 | 0.2224 | 59.7317 |
0.3559 | 13.1 | 1100 | 0.2110 | 62.2114 |
0.3559 | 14.29 | 1200 | 0.2060 | 63.4936 |
0.3559 | 15.48 | 1300 | 0.1994 | 63.7621 |
0.3559 | 16.67 | 1400 | 0.1959 | 63.3415 |
0.2423 | 17.86 | 1500 | 0.1932 | 63.7683 |
0.2423 | 19.05 | 1600 | 0.1898 | 64.2757 |
0.2423 | 20.24 | 1700 | 0.1901 | 64.2757 |
0.2423 | 21.43 | 1800 | 0.1875 | 64.1890 |
0.2423 | 22.62 | 1900 | 0.1852 | 63.8513 |
0.2051 | 23.81 | 2000 | 0.1837 | 64.4531 |
0.2051 | 25.0 | 2100 | 0.1829 | 64.4531 |
0.2051 | 26.19 | 2200 | 0.1818 | 64.6303 |
0.2051 | 27.38 | 2300 | 0.1817 | 64.6303 |
0.2051 | 28.57 | 2400 | 0.1816 | 65.0213 |
0.186 | 29.76 | 2500 | 0.1814 | 65.0213 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0a0+17540c5
- Datasets 2.1.0
- Tokenizers 0.12.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.