This model draws inspiration from SOLAR, but introduces a novel approach to increasing the model's depth without the traditional method of duplicating layers. By rearranging the order of layers during inference, it maintains the advantages of depth upscaling while preserving the original parameter count. Furthermore, it undergoes additional fine-tuning using the Dolphin dataset. The foundational architecture for this experiment is based on Dolphin.
Use
# pip install transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "adalbertojunior/DUSMistral"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
# Format message with the CHATML chat template
messages = [{"role": "user", "content": "Hello, how are you?"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
gen_tokens = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
- Downloads last month
- 11
Inference API (serverless) does not yet support model repos that contain custom code.