This is OpenLLaMA 3B V2 finetuned on LIMA(ShareGPT format) for 2 epochs.
Prompt template:
### HUMAN:
{prompt}
### RESPONSE:
<leave a newline for the model to answer>
GGUF quantizations available here.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 40.18 |
ARC (25-shot) | 40.36 |
HellaSwag (10-shot) | 72.0 |
MMLU (5-shot) | 26.43 |
TruthfulQA (0-shot) | 36.11 |
Winogrande (5-shot) | 65.67 |
GSM8K (5-shot) | 0.53 |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 40.18 |
AI2 Reasoning Challenge (25-Shot) | 40.36 |
HellaSwag (10-Shot) | 72.00 |
MMLU (5-Shot) | 26.43 |
TruthfulQA (0-shot) | 36.11 |
Winogrande (5-shot) | 65.67 |
GSM8k (5-shot) | 0.53 |
- Downloads last month
- 1,423
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for acrastt/Bean-3B
Dataset used to train acrastt/Bean-3B
Spaces using acrastt/Bean-3B 21
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard40.360
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard72.000
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard26.430
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard36.110
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard65.670
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard0.530