SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("acpotts/finetuned_arctic")
# Run inference
sentences = [
"What percentage of racy results did Google cut for searches like 'Latina teenager' in March 2022?",
"2022. https://www.reuters.com/technology/google-cuts-racy-results-by-30-searches-like-latina\xad\nteenager-2022-03-30/\n40. Safiya Umoja Noble. Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press.\nFeb. 2018. https://nyupress.org/9781479837243/algorithms-of-oppression/\n41. Paresh Dave. Google cuts racy results by 30% for searches like 'Latina teenager'. Reuters. Mar. 30,\n2022. https://www.reuters.com/technology/google-cuts-racy-results-by-30-searches-like-latina\xad\nteenager-2022-03-30/\n42. Miranda Bogen. All the Ways Hiring Algorithms Can Introduce Bias. Harvard Business Review. May\n6, 2019. https://hbr.org/2019/05/all-the-ways-hiring-algorithms-can-introduce-bias",
"they've used drugs, or whether they've expressed interest in LGBTQI+ groups, and then use that data to \nforecast student success.76 Parents and education experts have expressed concern about collection of such\nsensitive data without express parental consent, the lack of transparency in how such data is being used, and\nthe potential for resulting discriminatory impacts.\n• Many employers transfer employee data to third party job verification services. This information is then used\nby potential future employers, banks, or landlords. In one case, a former employee alleged that a\ncompany supplied false data about her job title which resulted in a job offer being revoked.77\n37",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.815 |
cosine_accuracy@3 | 0.935 |
cosine_accuracy@5 | 0.95 |
cosine_accuracy@10 | 0.965 |
cosine_precision@1 | 0.815 |
cosine_precision@3 | 0.3117 |
cosine_precision@5 | 0.19 |
cosine_precision@10 | 0.0965 |
cosine_recall@1 | 0.815 |
cosine_recall@3 | 0.935 |
cosine_recall@5 | 0.95 |
cosine_recall@10 | 0.965 |
cosine_ndcg@10 | 0.8954 |
cosine_mrr@10 | 0.8723 |
cosine_map@100 | 0.8742 |
dot_accuracy@1 | 0.815 |
dot_accuracy@3 | 0.935 |
dot_accuracy@5 | 0.95 |
dot_accuracy@10 | 0.965 |
dot_precision@1 | 0.815 |
dot_precision@3 | 0.3117 |
dot_precision@5 | 0.19 |
dot_precision@10 | 0.0965 |
dot_recall@1 | 0.815 |
dot_recall@3 | 0.935 |
dot_recall@5 | 0.95 |
dot_recall@10 | 0.965 |
dot_ndcg@10 | 0.8954 |
dot_mrr@10 | 0.8723 |
dot_map@100 | 0.8742 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 800 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 800 samples:
sentence_0 sentence_1 type string string details - min: 11 tokens
- mean: 20.11 tokens
- max: 36 tokens
- min: 3 tokens
- mean: 127.42 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 What are some of the principles proposed for the ethical use of AI and automated systems?
lems with legislation, and some courts extending longstanding statutory protections to new and emerging tech
nologies. There are companies working to incorporate additional protections in their design and use of auto
mated systems, and researchers developing innovative guardrails. Advocates, researchers, and government
organizations have proposed principles for the ethical use of AI and other automated systems. These include
the Organization for Economic Co-operation and Development’s (OECD’s) 2019 Recommendation on Artificial
Intelligence, which includes principles for responsible stewardship of trustworthy AI and which the UnitedHow are companies and researchers addressing the challenges posed by new and emerging technologies in relation to legislation?
lems with legislation, and some courts extending longstanding statutory protections to new and emerging tech
nologies. There are companies working to incorporate additional protections in their design and use of auto
mated systems, and researchers developing innovative guardrails. Advocates, researchers, and government
organizations have proposed principles for the ethical use of AI and other automated systems. These include
the Organization for Economic Co-operation and Development’s (OECD’s) 2019 Recommendation on Artificial
Intelligence, which includes principles for responsible stewardship of trustworthy AI and which the UnitedWhat is the purpose of reporting summary information about automated systems in plain language?
any operators or others who need to understand the system, and calibrated to the level of risk based on the
context. Reporting that includes summary information about these automated systems in plain language and
assessments of the clarity and quality of the notice and explanations should be made public whenever possible.
6 - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 20per_device_eval_batch_size
: 20num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 20per_device_eval_batch_size
: 20per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
1.0 | 40 | 0.8676 |
1.25 | 50 | 0.8670 |
2.0 | 80 | 0.8731 |
2.5 | 100 | 0.8722 |
1.0 | 40 | 0.8641 |
1.25 | 50 | 0.8654 |
2.0 | 80 | 0.8674 |
2.5 | 100 | 0.8706 |
3.0 | 120 | 0.8659 |
3.75 | 150 | 0.8697 |
4.0 | 160 | 0.8706 |
5.0 | 200 | 0.8742 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for acpotts/finetuned_arctic
Base model
Snowflake/snowflake-arctic-embed-mSpace using acpotts/finetuned_arctic 1
Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.815
- Cosine Accuracy@3 on Unknownself-reported0.935
- Cosine Accuracy@5 on Unknownself-reported0.950
- Cosine Accuracy@10 on Unknownself-reported0.965
- Cosine Precision@1 on Unknownself-reported0.815
- Cosine Precision@3 on Unknownself-reported0.312
- Cosine Precision@5 on Unknownself-reported0.190
- Cosine Precision@10 on Unknownself-reported0.096
- Cosine Recall@1 on Unknownself-reported0.815
- Cosine Recall@3 on Unknownself-reported0.935