7k-PhoContent-10304

This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2320
  • Accuracy: 0.9419
  • F1: 0.9150
  • Precision: 0.9233
  • Recall: 0.9074

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7443 2.6144 100 0.2005 0.9360 0.9056 0.9183 0.8945
0.348 5.2288 200 0.2175 0.9360 0.9024 0.9329 0.8792
0.348 7.8431 300 0.1926 0.9419 0.9128 0.9342 0.8952
0.1555 10.4575 400 0.2010 0.9457 0.9197 0.9344 0.9069
0.0984 13.0719 500 0.2211 0.9302 0.8967 0.9106 0.8846
0.0984 15.6863 600 0.2338 0.9322 0.8999 0.9124 0.8889
0.065 18.3007 700 0.2320 0.9419 0.9150 0.9233 0.9074

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
3
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ace-in-the-hole/7k-PhoContent-10304

Finetuned
(200)
this model