Llama-3-OpenBioMed-8B-dare-ties-4x

Llama-3-OpenBioMed-8B-dare-ties-4x is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: johnsnowlabs/JSL-MedLlama-3-8B-v2.0
    # No parameters necessary for base model
  - model: aaditya/Llama3-OpenBioLLM-8B
    parameters:
      density: 0.53
      weight: 0.2
  - model: johnsnowlabs/JSL-MedLlama-3-8B-v2.0
    parameters:
      density: 0.53
      weight: 0.3
  - model: Jayant9928/orpo_med_v3
    parameters:
      density: 0.53
      weight: 0.3
  - model: skumar9/Llama-medx_v3
    parameters:
        density: 0.53
        weight: 0.2
merge_method: dare_ties
base_model: meta-llama/Meta-Llama-3-8B-Instruct
parameters:
  int8_mask: true
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "abhinand/Llama-3-OpenBioMed-8B-dare-ties-4x"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
10
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for abhinand/Llama-3-OpenBioMed-8B-dare-ties-4x