File size: 2,485 Bytes
b1654a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50be219
 
 
 
 
 
 
b1654a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
708d08e
ff91a8b
50be219
b1654a4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: aalonso-developer/vit-base-patch16-224-in21k-euroSat
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# aalonso-developer/vit-base-patch16-224-in21k-euroSat

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0297
- Train Accuracy: 0.9978
- Train Top-3-accuracy: 1.0000
- Validation Loss: 0.0606
- Validation Accuracy: 0.9881
- Validation Top-3-accuracy: 0.9995
- Epoch: 3

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3590, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16

### Training results

| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 0.4737     | 0.9429         | 0.9862               | 0.1568          | 0.9788              | 0.9993                    | 0     |
| 0.0998     | 0.9878         | 0.9996               | 0.1010          | 0.9805              | 0.9993                    | 1     |
| 0.0503     | 0.9946         | 0.9999               | 0.0720          | 0.9857              | 0.9998                    | 2     |
| 0.0297     | 0.9978         | 1.0000               | 0.0606          | 0.9881              | 0.9995                    | 3     |


### Framework versions

- Transformers 4.29.1
- TensorFlow 2.11.0
- Datasets 2.12.0
- Tokenizers 0.13.3