File size: 2,640 Bytes
7b11329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37c9dba
 
 
 
 
 
 
7b11329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a00295
9a12641
083ac70
37c9dba
7b11329
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: aalonso-developer/vit-base-patch16-224-in21k-clothing-classifier
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# aalonso-developer/vit-base-patch16-224-in21k-clothing-classifier

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1749
- Train Accuracy: 0.9686
- Train Top-3-accuracy: 0.9922
- Validation Loss: 0.7294
- Validation Accuracy: 0.7906
- Validation Top-3-accuracy: 0.9437
- Epoch: 4

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3665, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16

### Training results

| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 1.3672     | 0.6720         | 0.8895               | 0.8886          | 0.7613              | 0.9415                    | 0     |
| 0.6745     | 0.8197         | 0.9615               | 0.7492          | 0.7790              | 0.9427                    | 1     |
| 0.4135     | 0.8942         | 0.9814               | 0.7119          | 0.7848              | 0.9475                    | 2     |
| 0.2566     | 0.9449         | 0.9892               | 0.7212          | 0.7860              | 0.9451                    | 3     |
| 0.1749     | 0.9686         | 0.9922               | 0.7294          | 0.7906              | 0.9437                    | 4     |


### Framework versions

- Transformers 4.29.1
- TensorFlow 2.11.0
- Datasets 2.12.0
- Tokenizers 0.13.3