Configuration Parsing
Warning:
In config.json: "quantization_config.bits" must be an integer
Exllamav2 quant (exl2 / 6.5 bpw) made with ExLlamaV2 v0.0.21
Other EXL2 quants:
Quant | Model Size | lm_head |
---|---|---|
Mahou-1.2-phi-14B
Please note: this is an untested, experimental release.
Mahou is our attempt to build a production-ready conversational/roleplay LLM.
Future versions will be released iteratively and finetuned from flammen.ai conversational data.
Chat Format
This model has been trained to use ChatML format.
<|im_start|>system
{{system}}<|im_end|>
<|im_start|>{{char}}
{{message}}<|im_end|>
<|im_start|>{{user}}
{{message}}<|im_end|>
Roleplay Format
- Speech without quotes.
- Actions in
*asterisks*
*leans against wall cooly* so like, i just casted a super strong spell at magician academy today, not gonna lie, felt badass.
ST Settings
- Use ChatML for the Context Template.
- Turn on Instruct Mode for ChatML.
- Use the following stopping strings:
["<", "|", "<|", "\n"]
Method
Finetuned using an A100 on Google Colab.
Fine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne
Configuration
LoRA, model, and training settings:
# LoRA configuration
peft_config = LoraConfig(
r=16,
lora_alpha=16,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)
# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
model.config.use_cache = False
# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
# Training arguments
training_args = TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
gradient_checkpointing=True,
learning_rate=5e-5,
lr_scheduler_type="cosine",
max_steps=2000,
save_strategy="no",
logging_steps=1,
output_dir=new_model,
optim="paged_adamw_32bit",
warmup_steps=100,
bf16=True,
report_to="wandb",
)
# Create DPO trainer
dpo_trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
peft_config=peft_config,
beta=0.1,
force_use_ref_model=True
)
# Fine-tune model with DPO
dpo_trainer.train()
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Zoyd/flammenai_Mahou-1.2-phi-14B-6_5bpw_exl2
Base model
microsoft/Phi-3-medium-128k-instruct