Edit model card

flan-t5-base-da-multiwoz2.0_800-loss-ep100

This model is a fine-tuned version of google/flan-t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3457
  • Accuracy: 41.0835
  • Num: 7358
  • Gen Len: 15.8615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 60
  • eval_batch_size: 400
  • seed: 1799
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy Num Gen Len
1.3234 2.22 200 0.5277 27.6507 7358 15.1567
0.5832 4.44 400 0.4297 33.2156 7358 16.0043
0.4991 6.67 600 0.4029 35.309 7358 16.0595
0.4618 8.89 800 0.3845 36.2347 7358 15.9841
0.4372 11.11 1000 0.3750 36.6748 7358 15.6254
0.4207 13.33 1200 0.3664 37.7404 7358 16.0586
0.4036 15.56 1400 0.3632 38.5822 7358 15.8968
0.3929 17.78 1600 0.3588 38.4617 7358 15.1256
0.3809 20.0 1800 0.3554 39.6862 7358 15.7427
0.3718 22.22 2000 0.3528 40.097 7358 15.9545
0.3658 24.44 2200 0.3517 39.9142 7358 15.3572
0.3581 26.67 2400 0.3486 40.6066 7358 15.7185
0.3513 28.89 2600 0.3476 40.6688 7358 16.0911
0.3449 31.11 2800 0.3469 41.0736 7358 15.7513
0.3395 33.33 3000 0.3457 41.0835 7358 15.8615
0.3318 35.56 3200 0.3486 41.0794 7358 15.9333
0.3283 37.78 3400 0.3474 41.5949 7358 16.0735
0.3229 40.0 3600 0.3476 41.8376 7358 15.7744
0.3184 42.22 3800 0.3474 41.6082 7358 16.0443
0.313 44.44 4000 0.3472 41.9014 7358 16.0557

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.5.1
  • Tokenizers 0.12.1
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.