Edit model card

Aradam_ViTL-16-384-2e-4-batch_16_epoch_4_classes_24

This model is a fine-tuned version of google/vit-large-patch16-384 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1097
  • Accuracy: 0.9698

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1511 0.03 100 0.8900 0.7471
0.8497 0.07 200 0.8558 0.7687
0.6297 0.1 300 0.5995 0.8132
0.5735 0.14 400 0.4456 0.8649
0.307 0.17 500 0.4031 0.8851
0.3961 0.21 600 0.4865 0.8506
0.6511 0.24 700 0.5270 0.8491
0.4526 0.28 800 0.6105 0.8376
0.4071 0.31 900 0.3936 0.8937
0.2729 0.35 1000 0.3287 0.8994
0.4277 0.38 1100 0.5402 0.8621
0.2588 0.42 1200 0.3344 0.9023
0.3034 0.45 1300 0.3269 0.8922
0.2463 0.49 1400 0.4931 0.8563
0.1999 0.52 1500 0.3622 0.9037
0.1483 0.56 1600 0.3114 0.9066
0.1266 0.59 1700 0.3893 0.8894
0.1131 0.63 1800 0.2696 0.9267
0.4377 0.66 1900 0.2953 0.9224
0.1578 0.7 2000 0.3059 0.9109
0.1273 0.73 2100 0.2474 0.9267
0.077 0.77 2200 0.2231 0.9382
0.0855 0.8 2300 0.2795 0.9368
0.0756 0.84 2400 0.2858 0.9210
0.2635 0.87 2500 0.2563 0.9353
0.1622 0.91 2600 0.2727 0.9325
0.1941 0.94 2700 0.2450 0.9239
0.0144 0.98 2800 0.2113 0.9454
0.0617 1.01 2900 0.1612 0.9454
0.0188 1.04 3000 0.2029 0.9425
0.0731 1.08 3100 0.1762 0.9612
0.0846 1.11 3200 0.1612 0.9569
0.0586 1.15 3300 0.2737 0.9353
0.0258 1.18 3400 0.1310 0.9670
0.0665 1.22 3500 0.1515 0.9540
0.0143 1.25 3600 0.2254 0.9440
0.0842 1.29 3700 0.2393 0.9468
0.0019 1.32 3800 0.1660 0.9526
0.013 1.36 3900 0.1413 0.9684
0.0177 1.39 4000 0.1455 0.9641
0.0128 1.43 4100 0.1291 0.9641
0.0222 1.46 4200 0.1567 0.9526
0.0017 1.5 4300 0.1640 0.9569
0.0009 1.53 4400 0.1861 0.9612
0.0007 1.57 4500 0.1440 0.9713
0.0026 1.6 4600 0.0940 0.9784
0.0006 1.64 4700 0.1282 0.9655
0.0023 1.67 4800 0.1341 0.9698
0.0002 1.71 4900 0.1099 0.9727
0.0013 1.74 5000 0.0872 0.9756
0.0001 1.78 5100 0.0908 0.9784
0.0006 1.81 5200 0.1034 0.9727
0.0009 1.85 5300 0.0940 0.9727
0.0 1.88 5400 0.1236 0.9655
0.0003 1.92 5500 0.1180 0.9684
0.0001 1.95 5600 0.1091 0.9698
0.0001 1.99 5700 0.1097 0.9698

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
7
Safetensors
Model size
304M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ZaneHorrible/ViTL_16_384_1e_4_batch_16_epoch_4_classes_24

Finetuned
(6)
this model

Evaluation results