YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
该模型使用llama-13b,使用UltraChat数据集进行指令微调,约140万多轮对话数据。仅需一张显卡即可完成训练。
firefly-llama-13b在🤗Hugging Face的Open LLM榜单上进行了客观的评测。
在榜单上,firefly-llama-13b取得了不错的效果,比vicuna-13b-1.1略高0.2分,比llama-2-13b-chat略低0.5分,比vicuna-13b-v1.3略低0.6分。从评测分数来看,firefly-llama-13b与vicuna-13b、llama-2-13b-chat的水平非常接近😎。
模型 | Average | ARC | HellaSwag | MMLU | TruthfulQA (MC) |
---|---|---|---|---|---|
Llama-2-70b-chat-hf | 66.8 | 64.6 | 85.9 | 63.9 | 52.8 |
vicuna-13b-v1.3 | 60 | 54.6 | 80.4 | 52.9 | 52.1 |
Llama-2-13b-chat-hf | 59.9 | 59 | 81.9 | 54.6 | 44.1 |
firefly-llama-13b | 59.4 | 59 | 79.7 | 49.1 | 49.6 |
vicuna-13b-1.1 | 59.2 | 52.7 | 80.1 | 51.9 | 52.1 |
guanaco-13B-HF | 59.1 | 57.8 | 83.8 | 48.3 | 46.7 |
值得注意的是,vicuna-13b模型采用的是全量参数微调,对训练资源的要求十分高。而firefly-llama-13b采用的则是QLoRA微调,最少仅需16G显存,即可对13B的模型进行微调。
详细介绍见文章:Firefly单卡复刻Vicuna-13B,Open LLM榜单🤗略高0.2分
更多详情见Firefly项目
- Downloads last month
- 1,647
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.