distilbert-base-uncased-tokenclassification_lora

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2286
  • Precision: 0.6655
  • Recall: 0.4474
  • F1: 0.5351
  • Accuracy: 0.9493

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 213 0.4882 0.0 0.0 0.0 0.9205
No log 2.0 426 0.4615 0.0 0.0 0.0 0.9205
0.9185 3.0 639 0.4220 0.0 0.0 0.0 0.9205
0.9185 4.0 852 0.3565 0.0 0.0 0.0 0.9205
0.25 5.0 1065 0.3219 0.25 0.0012 0.0024 0.9207
0.25 6.0 1278 0.3121 0.4737 0.0323 0.0605 0.9231
0.25 7.0 1491 0.3071 0.4783 0.0658 0.1157 0.9256
0.1979 8.0 1704 0.3015 0.4695 0.1196 0.1907 0.9290
0.1979 9.0 1917 0.2841 0.4871 0.2033 0.2869 0.9342
0.1775 10.0 2130 0.2823 0.4932 0.2177 0.3021 0.9349
0.1775 11.0 2343 0.2729 0.5090 0.2703 0.3531 0.9374
0.1691 12.0 2556 0.2731 0.5273 0.2775 0.3636 0.9382
0.1691 13.0 2769 0.2644 0.5660 0.3182 0.4074 0.9402
0.1691 14.0 2982 0.2648 0.6107 0.3134 0.4142 0.9402
0.1546 15.0 3195 0.2611 0.6388 0.3469 0.4496 0.9419
0.1546 16.0 3408 0.2570 0.6409 0.3565 0.4581 0.9431
0.1461 17.0 3621 0.2515 0.6541 0.3732 0.4752 0.9444
0.1461 18.0 3834 0.2461 0.6415 0.3959 0.4896 0.9456
0.1382 19.0 4047 0.2434 0.6452 0.4067 0.4989 0.9463
0.1382 20.0 4260 0.2464 0.6673 0.3983 0.4989 0.9457
0.1382 21.0 4473 0.2429 0.6767 0.4031 0.5052 0.9460
0.1324 22.0 4686 0.2411 0.684 0.4091 0.5120 0.9462
0.1324 23.0 4899 0.2336 0.6654 0.4306 0.5229 0.9475
0.129 24.0 5112 0.2411 0.6737 0.4175 0.5155 0.9469
0.129 25.0 5325 0.2385 0.6901 0.4234 0.5248 0.9473
0.1235 26.0 5538 0.2328 0.6843 0.4330 0.5304 0.9482
0.1235 27.0 5751 0.2343 0.6877 0.4294 0.5287 0.9481
0.1235 28.0 5964 0.2300 0.6649 0.4462 0.5340 0.9488
0.1195 29.0 6177 0.2323 0.6790 0.4378 0.5324 0.9483
0.1195 30.0 6390 0.2351 0.6869 0.4330 0.5312 0.9482
0.1179 31.0 6603 0.2329 0.6811 0.4342 0.5303 0.9482
0.1179 32.0 6816 0.2326 0.6779 0.4330 0.5285 0.9482
0.1156 33.0 7029 0.2326 0.6807 0.4258 0.5239 0.9481
0.1156 34.0 7242 0.2328 0.6870 0.4306 0.5294 0.9481
0.1156 35.0 7455 0.2327 0.6716 0.4354 0.5283 0.9484
0.114 36.0 7668 0.2290 0.6614 0.4486 0.5346 0.9492
0.114 37.0 7881 0.2275 0.6597 0.4522 0.5366 0.9495
0.1121 38.0 8094 0.2285 0.6643 0.4498 0.5364 0.9493
0.1121 39.0 8307 0.2275 0.6626 0.4533 0.5384 0.9495
0.1113 40.0 8520 0.2323 0.6784 0.4390 0.5330 0.9488
0.1113 41.0 8733 0.2289 0.6715 0.4450 0.5353 0.9491
0.1113 42.0 8946 0.2281 0.6696 0.4510 0.5390 0.9494
0.1111 43.0 9159 0.2284 0.6625 0.4486 0.5350 0.9493
0.1111 44.0 9372 0.2270 0.6591 0.4510 0.5355 0.9495
0.1077 45.0 9585 0.2291 0.6667 0.4474 0.5354 0.9493
0.1077 46.0 9798 0.2289 0.6691 0.4450 0.5345 0.9492
0.1089 47.0 10011 0.2272 0.6591 0.4510 0.5355 0.9495
0.1089 48.0 10224 0.2283 0.6661 0.4486 0.5361 0.9493
0.1089 49.0 10437 0.2286 0.6655 0.4474 0.5351 0.9493
0.1097 50.0 10650 0.2286 0.6655 0.4474 0.5351 0.9493

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.0.0+cu117
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
28
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Yeji-Seong/distilbert-base-uncased-tokenclassification_lora

Adapter
(200)
this model