grammars_13bf
This model is a fine-tuned version of NousResearch/Llama-2-13b-chat-hf on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- _load_in_8bit: True
- _load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
- bnb_4bit_quant_storage: uint8
- load_in_4bit: False
- load_in_8bit: True
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Framework versions
- PEFT 0.5.0
- Transformers 4.43.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.13.1
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for Xiangchi/grammars_13bf
Base model
NousResearch/Llama-2-13b-chat-hf