Whisper
openai/whisper-tiny.en with ONNX weights to be compatible with Transformers.js.
Usage
Example: Transcribe English.
// npm i @xenova/transformers
import { pipeline } from '@xenova/transformers';
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
// Create translation pipeline
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
let output = await transcriber(url);
// { text: " And so my fellow Americans ask not what your country can do for you, ask what you can do for your country." }
Example: Transcribe English w/ timestamps.
// npm i @xenova/transformers
import { pipeline } from '@xenova/transformers';
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
// Create translation pipeline
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
let output = await transcriber(url, { return_timestamps: true });
// {
// text: " And so my fellow Americans ask not what your country can do for you, ask what you can do for your country."
// chunks: [
// { timestamp: [0, 8], text: " And so my fellow Americans ask not what your country can do for you" }
// { timestamp: [8, 11], text: " ask what you can do for your country." }
// ]
// }
Example: Transcribe English w/ word-level timestamps.
// npm i @xenova/transformers
import { pipeline } from '@xenova/transformers';
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
// Create translation pipeline
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
let output = await transcriber(url, { return_timestamps: 'word' });
// {
// "text": " And so my fellow Americans ask not what your country can do for you ask what you can do for your country.",
// "chunks": [
// { "text": " And", "timestamp": [0, 0.78] },
// { "text": " so", "timestamp": [0.78, 1.06] },
// { "text": " my", "timestamp": [1.06, 1.46] },
// ...
// { "text": " for", "timestamp": [9.72, 9.92] },
// { "text": " your", "timestamp": [9.92, 10.22] },
// { "text": " country.", "timestamp": [10.22, 13.5] }
// ]
// }
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using π€ Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx
).
- Downloads last month
- 18,334
Inference API (serverless) does not yet support transformers.js models for this pipeline type.
Model tree for Xenova/whisper-tiny.en
Base model
openai/whisper-tiny.en