Edit model card

Whisper

openai/whisper-tiny.en with ONNX weights to be compatible with Transformers.js.

Usage

Example: Transcribe English.

// npm i @xenova/transformers
import { pipeline } from '@xenova/transformers';

let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';

// Create translation pipeline
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
let output = await transcriber(url);
// { text: " And so my fellow Americans ask not what your country can do for you, ask what you can do for your country." }

Example: Transcribe English w/ timestamps.

// npm i @xenova/transformers
import { pipeline } from '@xenova/transformers';

let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';

// Create translation pipeline
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
let output = await transcriber(url, { return_timestamps: true });
// {
//   text: " And so my fellow Americans ask not what your country can do for you, ask what you can do for your country."
//   chunks: [
//     { timestamp: [0, 8],  text: " And so my fellow Americans ask not what your country can do for you" }
//     { timestamp: [8, 11], text: " ask what you can do for your country." }
//   ]
// }

Example: Transcribe English w/ word-level timestamps.

// npm i @xenova/transformers
import { pipeline } from '@xenova/transformers';

let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';

// Create translation pipeline
let transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
let output = await transcriber(url, { return_timestamps: 'word' });
// {
//   "text": " And so my fellow Americans ask not what your country can do for you ask what you can do for your country.",
//   "chunks": [
//     { "text": " And", "timestamp": [0, 0.78] },
//     { "text": " so", "timestamp": [0.78, 1.06] },
//     { "text": " my", "timestamp": [1.06, 1.46] },
//     ...
//     { "text": " for", "timestamp": [9.72, 9.92] },
//     { "text": " your", "timestamp": [9.92, 10.22] },
//     { "text": " country.", "timestamp": [10.22, 13.5] }
//   ]
// }

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using πŸ€— Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).

Downloads last month
18,334
Inference Examples
Inference API (serverless) does not yet support transformers.js models for this pipeline type.

Model tree for Xenova/whisper-tiny.en

Quantized
(4)
this model

Spaces using Xenova/whisper-tiny.en 31