File size: 1,717 Bytes
6014ea3
3e803d3
6014ea3
6c1f2e1
3e803d3
6014ea3
 
 
 
6c1f2e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6014ea3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
base_model: timm/fastvit_t8.apple_dist_in1k
library_name: transformers.js
license: other
pipeline_tag: image-classification
---

https://huggingface.co/timm/fastvit_t8.apple_dist_in1k with ONNX weights to be compatible with Transformers.js.

## Usage (Transformers.js)

If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```

**Example:** Perform image classification with `Xenova/fastvit_t8.apple_dist_in1k`.
```js
import { pipeline } from '@xenova/transformers';

// Create an image classification pipeline
const classifier = await pipeline('image-classification', 'Xenova/fastvit_t8.apple_dist_in1k', {
  quantized: false
});

// Classify an image
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
const output = await classifier(url, { topk: 5 });
console.log(output);
// [
//   { label: 'tiger, Panthera tigris', score: 0.7876936197280884 },
//   { label: 'tiger cat', score: 0.08878856152296066 },
//   { label: 'zebra', score: 0.0008800383075140417 },
//   { label: 'Appenzeller', score: 0.0008539424743503332 },
//   { label: 'jaguar, panther, Panthera onca, Felis onca', score: 0.0008008014992810786 }
// ]
```

---

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).