Xenova HF staff commited on
Commit
6c1f2e1
1 Parent(s): 47d2255

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -0
README.md CHANGED
@@ -1,7 +1,40 @@
1
  ---
2
  library_name: transformers.js
 
 
3
  ---
4
 
5
  https://huggingface.co/timm/fastvit_t8.apple_dist_in1k with ONNX weights to be compatible with Transformers.js.
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
1
  ---
2
  library_name: transformers.js
3
+ pipeline_tag: image-classification
4
+ license: other
5
  ---
6
 
7
  https://huggingface.co/timm/fastvit_t8.apple_dist_in1k with ONNX weights to be compatible with Transformers.js.
8
 
9
+ ## Usage (Transformers.js)
10
+
11
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
12
+ ```bash
13
+ npm i @xenova/transformers
14
+ ```
15
+
16
+ **Example:** Perform image classification with `Xenova/fastvit_t8.apple_dist_in1k`.
17
+ ```js
18
+ import { pipeline } from '@xenova/transformers';
19
+
20
+ // Create an image classification pipeline
21
+ const classifier = await pipeline('image-classification', 'Xenova/fastvit_t8.apple_dist_in1k', {
22
+ quantized: false
23
+ });
24
+
25
+ // Classify an image
26
+ const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
27
+ const output = await classifier(url, { topk: 5 });
28
+ console.log(output);
29
+ // [
30
+ // { label: 'tiger, Panthera tigris', score: 0.7876936197280884 },
31
+ // { label: 'tiger cat', score: 0.08878856152296066 },
32
+ // { label: 'zebra', score: 0.0008800383075140417 },
33
+ // { label: 'Appenzeller', score: 0.0008539424743503332 },
34
+ // { label: 'jaguar, panther, Panthera onca, Felis onca', score: 0.0008008014992810786 }
35
+ // ]
36
+ ```
37
+
38
+ ---
39
+
40
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).