https://huggingface.co/timm/fastvit_sa36.apple_dist_in1k with ONNX weights to be compatible with Transformers.js.

Usage (Transformers.js)

If you haven't already, you can install the Transformers.js JavaScript library from NPM using:

npm i @xenova/transformers

Example: Perform image classification with Xenova/fastvit_sa36.apple_dist_in1k.

import { pipeline } from '@xenova/transformers';

// Create an image classification pipeline
const classifier = await pipeline('image-classification', 'Xenova/fastvit_sa36.apple_dist_in1k');

// Classify an image
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
const output = await classifier(url, { topk: 5 });
console.log(output);
// [
//   { label: 'tiger, Panthera tigris', score: 0.8331905603408813 },
//   { label: 'tiger cat', score: 0.03715505823493004 },
//   { label: 'jaguar, panther, Panthera onca, Felis onca', score: 0.005657752510160208 },
//   { label: 'leopard, Panthera pardus', score: 0.0022480343468487263 },
//   { label: 'lynx, catamount', score: 0.000892136711627245 }
// ]

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).

Downloads last month
18
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support image-classification models for transformers.js library.

Model tree for Xenova/fastvit_sa36.apple_dist_in1k

Quantized
(1)
this model