Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

base_model: "Workermen/ru_qwen"
model_type: Qwen2ForCausalLM
tokenizer_type: AutoTokenizer

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: chatml

datasets:
  - path: "/workspace/data/axolotl/examples/qwen2/train"
    data_files: "./train/train_01.jsonl"
    type: chat_template
    field_messages: conversations

  - path: "/workspace/data/axolotl/examples/qwen2/train"
    data_files: "./train/train_02.jsonl"
    type: chat_template
    field_messages: conversations
    
  - path: "/workspace/data/axolotl/examples/qwen2/train"
    data_files: "./train/train_03.jsonl"
    type: chat_template
    field_messages: conversations
    
  - path: "/workspace/data/axolotl/examples/qwen2/train"
    data_files: "./train/train_04.jsonl"
    type: chat_template
    field_messages: conversations
    
  - path: "/workspace/data/axolotl/examples/qwen2/train"
    data_files: "./train/validation.jsonl"
    type: chat_template
    field_messages: conversations


dataset_prepared_path: "/workspace/data/axolotl/examples/qwen2"
val_set_size: 0.05
output_dir: "/workspace/data/pyx_03_15_1_tochno"

sequence_len: 5300
sample_packing: false
pad_to_sequence_len: true

#mlflow_tracking_uri: "http://localhost:8080"
#mlflow_experiment_name: "my_axolotl_experiment"
#mlflow_run_name: "run-1"
#hf_mlflow_log_artifacts: true

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 32
micro_batch_size: 4
num_epochs: 2

optimizer: paged_adamw_8bit
lr_scheduler: cosine
cosine_min_lr_ratio: 0.5
cosine_constant_lr_ratio: 0.5
learning_rate: 0.00004

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
max_grad_norm: 2

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

save_safetensors: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: #deepspeed_configs/zero3_bf16_cpuoffload_all.json
weight_decay: 0.0
fsdp:
#  - full_shard
#  - auto_wrap
fsdp_config:
#  fsdp_limit_all_gathers: true
#  fsdp_sync_module_states: true
#  fsdp_offload_params: true
#  fsdp_use_orig_params: false
#  fsdp_cpu_ram_efficient_loading: true
#  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
#  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
#  fsdp_state_dict_type: FULL_STATE_DICT
#  fsdp_sharding_strategy: FULL_SHARD
#  fsdp_backward_prefetch: BACKWARD_PRE
special_tokens:

workspace/data/pyx_03_15_1_tochno

This model is a fine-tuned version of Workermen/ru_qwen on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
1.1643 0.0010 1 1.1436
0.8729 0.2506 244 0.8838
0.8384 0.5012 488 0.8257
0.6237 0.7517 732 0.7867
0.5029 1.0021 976 0.7567
0.5637 1.2526 1220 0.7540
0.5629 1.5032 1464 0.7309
0.4682 1.7538 1708 0.7111

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
14.8B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Workermen/qwenpyx

Base model

Workermen/ru_qwen
Finetuned
(1)
this model