See axolotl config
axolotl version: 0.8.0.dev0
base_model: "Workermen/ru_qwen"
model_type: Qwen2ForCausalLM
tokenizer_type: AutoTokenizer
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: "/workspace/data/axolotl/examples/qwen2/train"
data_files: "./train/train_01.jsonl"
type: chat_template
field_messages: conversations
- path: "/workspace/data/axolotl/examples/qwen2/train"
data_files: "./train/train_02.jsonl"
type: chat_template
field_messages: conversations
- path: "/workspace/data/axolotl/examples/qwen2/train"
data_files: "./train/train_03.jsonl"
type: chat_template
field_messages: conversations
- path: "/workspace/data/axolotl/examples/qwen2/train"
data_files: "./train/train_04.jsonl"
type: chat_template
field_messages: conversations
- path: "/workspace/data/axolotl/examples/qwen2/train"
data_files: "./train/validation.jsonl"
type: chat_template
field_messages: conversations
dataset_prepared_path: "/workspace/data/axolotl/examples/qwen2"
val_set_size: 0.05
output_dir: "/workspace/data/pyx_03_15_1_tochno"
sequence_len: 5300
sample_packing: false
pad_to_sequence_len: true
#mlflow_tracking_uri: "http://localhost:8080"
#mlflow_experiment_name: "my_axolotl_experiment"
#mlflow_run_name: "run-1"
#hf_mlflow_log_artifacts: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 32
micro_batch_size: 4
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
cosine_min_lr_ratio: 0.5
cosine_constant_lr_ratio: 0.5
learning_rate: 0.00004
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
max_grad_norm: 2
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
save_safetensors: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: #deepspeed_configs/zero3_bf16_cpuoffload_all.json
weight_decay: 0.0
fsdp:
# - full_shard
# - auto_wrap
fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_sync_module_states: true
# fsdp_offload_params: true
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: true
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
# fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
# fsdp_state_dict_type: FULL_STATE_DICT
# fsdp_sharding_strategy: FULL_SHARD
# fsdp_backward_prefetch: BACKWARD_PRE
special_tokens:
workspace/data/pyx_03_15_1_tochno
This model is a fine-tuned version of Workermen/ru_qwen on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7111
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1643 | 0.0010 | 1 | 1.1436 |
0.8729 | 0.2506 | 244 | 0.8838 |
0.8384 | 0.5012 | 488 | 0.8257 |
0.6237 | 0.7517 | 732 | 0.7867 |
0.5029 | 1.0021 | 976 | 0.7567 |
0.5637 | 1.2526 | 1220 | 0.7540 |
0.5629 | 1.5032 | 1464 | 0.7309 |
0.4682 | 1.7538 | 1708 | 0.7111 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Workermen/qwenpyx
Base model
Workermen/ru_qwen