Seraph-7B
This is the model for Seraph-7B. I used mergekit to merge models.
Prompt Templates
You can use these prompt templates, but I recommend using ChatML.
ChatML:
<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>
System, User, Asistant Alpaca Style:
### System:
{system}
### User:
{user}
### Assistant:
Yaml Config
slices:
- sources:
- model: Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp
layer_range: [0, 32]
- model: Q-bert/MetaMath-Cybertron-Starling
layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-v0.1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: bfloat16
Quantizationed versions
Quantizationed versions of this model is available thanks to TheBloke.
GPTQ
GGUF
AWQ
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 71.86 |
ARC (25-shot) | 67.83 |
HellaSwag (10-shot) | 86.22 |
MMLU (5-shot) | 65.07 |
TruthfulQA (0-shot) | 59.49 |
Winogrande (5-shot) | 80.66 |
GSM8K (5-shot) | 71.87 |
If you would like to support me:
- Downloads last month
- 1,053
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Weyaxi/Seraph-7B
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard67.830
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard86.220
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard65.070
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard59.490
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard80.660
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard71.870