add files - PR (with the other config PR)- check description

#8
cambrian_arch.py ADDED
@@ -0,0 +1,1712 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Haotian Liu
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import math
17
+ import random
18
+ from abc import ABC, abstractmethod
19
+
20
+ import torch
21
+ import torch.nn as nn
22
+ import torch.nn.functional as F
23
+
24
+ # define the constants
25
+ CONTROLLER_HEART_BEAT_EXPIRATION = 30
26
+ WORKER_HEART_BEAT_INTERVAL = 15
27
+
28
+ LOGDIR = "."
29
+
30
+ # Model Constants
31
+ IGNORE_INDEX = -100
32
+ IMAGE_TOKEN_INDEX = -200
33
+ DEFAULT_IMAGE_TOKEN = "<image>"
34
+ DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
35
+ DEFAULT_IM_START_TOKEN = "<im_start>"
36
+ DEFAULT_IM_END_TOKEN = "<im_end>"
37
+ IMAGE_PLACEHOLDER = "<image-placeholder>"
38
+
39
+ from .multimodal_encoder_builder import build_vision_tower_aux_list
40
+ from .multimodal_projector_builder import build_vision_projector
41
+ from .vision_sampler import VisionTokenSampler
42
+
43
+ IS_XLA_AVAILABLE = False
44
+
45
+
46
+ class CambrianMetaModel:
47
+
48
+ def __init__(self, config):
49
+ super(CambrianMetaModel, self).__init__(config)
50
+
51
+ if hasattr(config, "mm_vision_tower_aux_list"):
52
+
53
+ projector_type = getattr(config, "mm_projector_type", "linear")
54
+ if projector_type == "sva":
55
+
56
+ vision_hidden_size = config.vision_hidden_size
57
+ num_query_group = config.num_query_group
58
+ query_num_list = config.query_num_list
59
+ connector_only = config.connector_only
60
+ connector_depth = config.connector_depth
61
+ self.vision_tower_aux_list = build_vision_tower_aux_list(
62
+ config, delay_load=True
63
+ )
64
+ self.mm_projector = nn.Sequential(
65
+ nn.Linear(vision_hidden_size * num_query_group, config.hidden_size),
66
+ nn.GELU(),
67
+ nn.Linear(config.hidden_size, config.hidden_size),
68
+ )
69
+
70
+ image_token_len = config.image_token_len
71
+ vision_tower_aux_token_len_list = (
72
+ self.config.mm_vision_tower_aux_token_len_list
73
+ )
74
+ cross_att_token_len_list = [
75
+ int(vision_tower_aux_token_len**0.5) // int(image_token_len**0.5)
76
+ for vision_tower_aux_token_len in vision_tower_aux_token_len_list
77
+ ]
78
+
79
+ for aux_i, vision_tower_aux in enumerate(self.vision_tower_aux_list):
80
+ setattr(
81
+ self,
82
+ "mm_projector_aux_{}".format(aux_i),
83
+ nn.Sequential(
84
+ nn.Linear(vision_tower_aux.hidden_size, vision_hidden_size),
85
+ nn.GELU(),
86
+ nn.Linear(vision_hidden_size, vision_hidden_size),
87
+ nn.LayerNorm(vision_hidden_size),
88
+ ),
89
+ )
90
+
91
+ for query_group_i in range(num_query_group):
92
+ cross_att_token_len_list = [
93
+ int(vision_tower_aux_token_len**0.5)
94
+ // int(query_num_list[query_group_i] ** 0.5)
95
+ for vision_tower_aux_token_len in vision_tower_aux_token_len_list
96
+ ]
97
+ setattr(
98
+ self,
99
+ "vision_sampler_{}".format(query_group_i),
100
+ VisionTokenSampler(
101
+ vision_hidden_size,
102
+ vision_hidden_size,
103
+ [vision_hidden_size] * len(self.vision_tower_aux_list),
104
+ cross_att_token_len_list,
105
+ vision_hidden_size,
106
+ connector_depth,
107
+ ),
108
+ )
109
+
110
+ if not connector_only:
111
+ num_of_vision_sampler_layers = (
112
+ config.num_of_vision_sampler_layers
113
+ ) = config.num_of_vision_sampler_layers
114
+ config.start_of_vision_sampler_layers = (
115
+ config.start_of_vision_sampler_layers
116
+ )
117
+ config.stride_of_vision_sampler_layers = (
118
+ config.stride_of_vision_sampler_layers
119
+ )
120
+ cross_att_token_len_list = [
121
+ int(vision_tower_aux_token_len**0.5)
122
+ // int(image_token_len**0.5)
123
+ for vision_tower_aux_token_len in vision_tower_aux_token_len_list
124
+ ]
125
+ self.vision_sampler_layers = nn.ModuleList(
126
+ [
127
+ VisionTokenSampler(
128
+ config.hidden_size,
129
+ vision_hidden_size,
130
+ [vision_hidden_size] * len(self.vision_tower_aux_list),
131
+ cross_att_token_len_list,
132
+ vision_hidden_size,
133
+ 1,
134
+ )
135
+ for layer_idx in range(0, num_of_vision_sampler_layers)
136
+ ]
137
+ )
138
+
139
+ self.vision_query = nn.Parameter(
140
+ torch.randn((num_query_group, vision_hidden_size), dtype=self.dtype)
141
+ )
142
+
143
+ self.image_newline = nn.Parameter(
144
+ torch.empty(config.hidden_size, dtype=self.dtype)
145
+ )
146
+
147
+ self.frame_pos = torch.stack(
148
+ [
149
+ 1
150
+ / torch.pow(
151
+ torch.tensor(10000),
152
+ torch.tensor(2 * (hid_j // 2) / config.hidden_size),
153
+ )
154
+ for hid_j in range(config.hidden_size)
155
+ ]
156
+ )
157
+
158
+ else:
159
+ self.vision_tower_aux_list = build_vision_tower_aux_list(
160
+ config, delay_load=True
161
+ )
162
+ config.mm_hidden_size = sum(
163
+ [
164
+ vision_tower_aux.hidden_size
165
+ for vision_tower_aux in self.vision_tower_aux_list
166
+ ]
167
+ )
168
+ self.mm_projector = build_vision_projector(config)
169
+ self.image_newline = nn.Parameter(
170
+ torch.empty(config.hidden_size, dtype=self.dtype)
171
+ )
172
+
173
+ def get_frame_pos(self, time_range):
174
+ frame_pos = self.frame_pos.reshape(1, -1) * time_range.reshape(-1, 1).to(
175
+ self.frame_pos.device
176
+ )
177
+ frame_pos[:, 0::2] = torch.sin(frame_pos[:, 0::2])
178
+ frame_pos[:, 1::2] = torch.cos(frame_pos[:, 0::2])
179
+ frame_pos = frame_pos.unsqueeze(1)
180
+ return frame_pos
181
+
182
+ # def get_vision_tower(self):
183
+ # vision_tower = getattr(self, 'vision_tower', None)
184
+ # if type(vision_tower) is list:
185
+ # vision_tower = vision_tower[0]
186
+ # return vision_tower
187
+
188
+ def get_vision_tower_aux_list(self):
189
+ vision_tower_aux_list = getattr(self, "vision_tower_aux_list", None)
190
+ return vision_tower_aux_list
191
+
192
+ def initialize_vision_modules(self, model_args, fsdp=None):
193
+ # vision_tower = model_args.vision_tower
194
+ num_query_group = model_args.num_query_group
195
+ query_num_list = model_args.query_num_list
196
+ vision_hidden_size = model_args.vision_hidden_size
197
+ vision_tower_aux_list = model_args.vision_tower_aux_list
198
+ vision_tower_aux_token_len_list = model_args.vision_tower_aux_token_len_list
199
+ image_token_len = model_args.image_token_len
200
+ mm_vision_select_layer = model_args.mm_vision_select_layer
201
+ mm_vision_select_feature = model_args.mm_vision_select_feature
202
+ pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
203
+ connector_only = model_args.connector_only
204
+ connector_depth = model_args.connector_depth
205
+
206
+ # self.config.mm_vision_tower = vision_tower
207
+ self.config.image_token_len = image_token_len
208
+ self.config.num_query_group = num_query_group
209
+ self.config.query_num_list = query_num_list
210
+ assert num_query_group == len(query_num_list)
211
+ self.config.connector_depth = connector_depth
212
+ self.config.mm_vision_tower_aux_list = vision_tower_aux_list
213
+ self.config.mm_vision_tower_aux_token_len_list = vision_tower_aux_token_len_list
214
+ self.config.connector_only = connector_only
215
+ self.config.highres_connect = model_args.highres_connect
216
+ self.config.highres = model_args.highres
217
+ self.config.frame_pos = model_args.frame_pos
218
+ self.config.lowres_token = model_args.lowres_token
219
+ self.config.connect_layer = model_args.connect_layer
220
+ self.config.dino_threshold = getattr(model_args, "dino_threshold", 0.83)
221
+ self.config.drop_threshold = getattr(model_args, "drop_threshold", 0.6)
222
+ self.config.is_image_newline = getattr(model_args, "is_image_newline", True)
223
+
224
+ if self.get_vision_tower_aux_list() is None:
225
+ vision_tower_aux_list = build_vision_tower_aux_list(model_args)
226
+ if model_args.unfreeze_mm_vision_tower:
227
+ self.vision_tower_aux_list = nn.ModuleList(vision_tower_aux_list)
228
+ else:
229
+ self.vision_tower_aux_list = vision_tower_aux_list
230
+ else:
231
+ vision_tower_aux_list = self.vision_tower_aux_list
232
+ for vision_tower_aux in vision_tower_aux_list:
233
+ vision_tower_aux.load_model()
234
+
235
+ self.config.use_mm_proj = True
236
+ self.config.mm_projector_type = getattr(
237
+ model_args, "mm_projector_type", "linear"
238
+ )
239
+ self.config.vision_hidden_size = vision_hidden_size
240
+ self.config.mm_vision_select_layer = mm_vision_select_layer
241
+ self.config.mm_vision_select_feature = mm_vision_select_feature
242
+
243
+ if getattr(self, "mm_projector", None) is None:
244
+
245
+ if self.config.mm_projector_type == "sva":
246
+ self.mm_projector = nn.Sequential(
247
+ nn.Linear(
248
+ vision_hidden_size * num_query_group, self.config.hidden_size
249
+ ),
250
+ nn.GELU(),
251
+ nn.Linear(self.config.hidden_size, self.config.hidden_size),
252
+ )
253
+ for aux_i, vision_tower_aux in enumerate(vision_tower_aux_list):
254
+ setattr(
255
+ self,
256
+ "mm_projector_aux_{}".format(aux_i),
257
+ nn.Sequential(
258
+ nn.Linear(vision_tower_aux.hidden_size, vision_hidden_size),
259
+ nn.GELU(),
260
+ nn.Linear(vision_hidden_size, vision_hidden_size),
261
+ nn.LayerNorm(vision_hidden_size),
262
+ ),
263
+ )
264
+
265
+ # vision sampler for each group of query as the connector before the LLM
266
+ for query_group_i in range(num_query_group):
267
+ cross_att_token_len_list = [
268
+ int(vision_tower_aux_token_len**0.5)
269
+ // int(query_num_list[query_group_i] ** 0.5)
270
+ for vision_tower_aux_token_len in vision_tower_aux_token_len_list
271
+ ]
272
+ setattr(
273
+ self,
274
+ "vision_sampler_{}".format(query_group_i),
275
+ VisionTokenSampler(
276
+ vision_hidden_size,
277
+ vision_hidden_size,
278
+ [vision_hidden_size] * len(vision_tower_aux_list),
279
+ cross_att_token_len_list,
280
+ vision_hidden_size,
281
+ connector_depth,
282
+ ),
283
+ )
284
+
285
+ # sampler layers within LLM
286
+ if not connector_only:
287
+ num_of_vision_sampler_layers = (
288
+ self.config.num_of_vision_sampler_layers
289
+ ) = model_args.num_of_vision_sampler_layers
290
+ self.config.start_of_vision_sampler_layers = (
291
+ model_args.start_of_vision_sampler_layers
292
+ )
293
+ self.config.stride_of_vision_sampler_layers = (
294
+ model_args.stride_of_vision_sampler_layers
295
+ )
296
+ cross_att_token_len_list = [
297
+ int(vision_tower_aux_token_len**0.5)
298
+ // int(image_token_len**0.5)
299
+ for vision_tower_aux_token_len in vision_tower_aux_token_len_list
300
+ ]
301
+ self.vision_sampler_layers = nn.ModuleList(
302
+ [
303
+ VisionTokenSampler(
304
+ self.config.hidden_size,
305
+ vision_hidden_size,
306
+ [vision_hidden_size] * len(vision_tower_aux_list),
307
+ cross_att_token_len_list,
308
+ vision_hidden_size,
309
+ 1,
310
+ )
311
+ for layer_idx in range(0, num_of_vision_sampler_layers)
312
+ ]
313
+ )
314
+ vision_embed_std = 1 / torch.sqrt(
315
+ torch.tensor(vision_hidden_size, dtype=self.dtype)
316
+ )
317
+ self.vision_query = nn.Parameter(
318
+ torch.randn((num_query_group, vision_hidden_size), dtype=self.dtype)
319
+ * vision_embed_std
320
+ )
321
+
322
+ embed_std = 1 / torch.sqrt(
323
+ torch.tensor(self.config.hidden_size, dtype=self.dtype)
324
+ )
325
+ self.image_newline = nn.Parameter(
326
+ torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
327
+ )
328
+
329
+ else:
330
+ self.config.mm_hidden_size = sum(
331
+ [
332
+ vision_tower_aux.hidden_size
333
+ for vision_tower_aux in vision_tower_aux_list
334
+ ]
335
+ )
336
+ self.mm_projector = build_vision_projector(self.config)
337
+ embed_std = 1 / torch.sqrt(
338
+ torch.tensor(self.config.hidden_size, dtype=self.dtype)
339
+ )
340
+ self.image_newline = nn.Parameter(
341
+ torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
342
+ )
343
+ else:
344
+ # In case it is frozen by LoRA
345
+ for p in self.mm_projector.parameters():
346
+ p.requires_grad = True
347
+
348
+ if pretrain_mm_mlp_adapter is not None:
349
+ mm_projector_weights = torch.load(
350
+ pretrain_mm_mlp_adapter, map_location="cpu"
351
+ )
352
+
353
+ def get_w(weights, keyword):
354
+ return {
355
+ k.split(keyword + ".")[1]: v
356
+ for k, v in weights.items()
357
+ if keyword + "." in k
358
+ }
359
+
360
+ self.mm_projector.load_state_dict(
361
+ get_w(mm_projector_weights, "mm_projector"), strict=True
362
+ )
363
+
364
+ if self.config.mm_projector_type == "sva":
365
+ for aux_i in range(len(vision_tower_aux_list)):
366
+ getattr(self, "mm_projector_aux_{}".format(aux_i)).load_state_dict(
367
+ get_w(
368
+ mm_projector_weights, "mm_projector_aux_{}".format(aux_i)
369
+ ),
370
+ strict=True,
371
+ )
372
+
373
+ for query_group_i in range(num_query_group):
374
+ getattr(
375
+ self, "vision_sampler_{}".format(query_group_i)
376
+ ).load_state_dict(
377
+ get_w(
378
+ mm_projector_weights,
379
+ "vision_sampler_{}".format(query_group_i),
380
+ ),
381
+ strict=True,
382
+ )
383
+
384
+ if not connector_only:
385
+ self.vision_sampler_layers.load_state_dict(
386
+ get_w(mm_projector_weights, "vision_sampler_layers"),
387
+ strict=True,
388
+ )
389
+ self.vision_query.data = mm_projector_weights["model.vision_query"]
390
+ self.image_newline.data = mm_projector_weights["model.image_newline"]
391
+
392
+
393
+ def unmask_attention_mask(mask, original_size):
394
+ original_w, original_h = original_size
395
+ cur_h, cur_w = mask.shape[1:3]
396
+
397
+ original_aspect_ratio = original_w / original_h
398
+ current_aspect_ratio = cur_w / cur_h
399
+
400
+ if original_aspect_ratio > current_aspect_ratio:
401
+ scale_factor = cur_w / original_w
402
+ new_height = int(original_h * scale_factor)
403
+ padding = (cur_h - new_height) // 2
404
+ if padding > 0:
405
+ mask[:, :padding, :] = 0
406
+ mask[:, -padding:, :] = 0
407
+ return mask
408
+ else:
409
+ scale_factor = cur_h / original_h
410
+ new_width = int(original_w * scale_factor)
411
+ padding = (cur_w - new_width) // 2
412
+ if padding > 0:
413
+ mask[:, :, :padding] = 0
414
+ mask[:, :, -padding:] = 0
415
+ return mask
416
+
417
+
418
+ def unpad_image(tensor, original_size):
419
+ """
420
+ Unpads a PyTorch tensor of a padded and resized image.
421
+
422
+ Args:
423
+ tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
424
+ original_size (tuple): The original size of the image (height, width).
425
+
426
+ Returns:
427
+ torch.Tensor: The unpadded image tensor.
428
+ """
429
+ original_width, original_height = original_size
430
+ current_height, current_width = tensor.shape[1:3]
431
+
432
+ original_aspect_ratio = original_width / original_height
433
+ current_aspect_ratio = current_width / current_height
434
+
435
+ if original_aspect_ratio > current_aspect_ratio:
436
+ scale_factor = current_width / original_width
437
+ new_height = int(original_height * scale_factor)
438
+ padding = (current_height - new_height) // 2
439
+ unpadded_tensor = tensor[:, padding : current_height - padding, :]
440
+ # if 0 in unpadded_tensor.shape:
441
+ # print(f"scale_factor: {scale_factor}, new_height: {new_height}, padding: {padding}, original_width: {original_width}, original_height: {original_height}")
442
+ else:
443
+ scale_factor = current_height / original_height
444
+ new_width = int(original_width * scale_factor)
445
+ padding = (current_width - new_width) // 2
446
+ unpadded_tensor = tensor[:, :, padding : current_width - padding]
447
+ # if 0 in unpadded_tensor.shape:
448
+ # print(f"scale_factor: {scale_factor}, new_width: {new_width}, padding: {padding}, original_width: {original_width}, original_height: {original_height}")
449
+
450
+ return unpadded_tensor
451
+
452
+
453
+ class CambrianMetaForCausalLM(ABC):
454
+
455
+ @abstractmethod
456
+ def get_model(self):
457
+ pass
458
+
459
+ # def get_vision_tower(self):
460
+ # return self.get_model().get_vision_tower()
461
+
462
+ def get_vision_tower_aux_list(self):
463
+ return self.get_model().get_vision_tower_aux_list()
464
+
465
+ def rearrange_vision_tower_features_train(
466
+ self,
467
+ vision_tower_aux_feature_list,
468
+ vision_tower_aux_attention_masks_list,
469
+ query_side_len,
470
+ ):
471
+ vision_tower_aux_feature_rearranged_list = []
472
+ vision_tower_aux_attention_masks_rearranged_list = []
473
+ bs = vision_tower_aux_feature_list[0].shape[0]
474
+ for vision_tower_aux_feature, vision_tower_aux_attention_masks in zip(
475
+ vision_tower_aux_feature_list, vision_tower_aux_attention_masks_list
476
+ ):
477
+ aux_height = aux_width = int(vision_tower_aux_feature.shape[1] ** 0.5)
478
+ assert (aux_height // query_side_len) * query_side_len == aux_height
479
+
480
+ reduce_factor = aux_height // query_side_len
481
+ vision_tower_aux_feature_rearranged = vision_tower_aux_feature.view(
482
+ bs, query_side_len, reduce_factor, query_side_len, reduce_factor, -1
483
+ )
484
+ vision_tower_aux_feature_rearranged = (
485
+ vision_tower_aux_feature_rearranged.permute(0, 1, 3, 2, 4, 5)
486
+ .contiguous()
487
+ .flatten(0, 2)
488
+ .flatten(1, 2)
489
+ )
490
+
491
+ vision_tower_aux_attention_masks_rearranged = (
492
+ vision_tower_aux_attention_masks.view(
493
+ bs * query_side_len * query_side_len, reduce_factor * reduce_factor
494
+ )
495
+ )
496
+
497
+ vision_tower_aux_feature_rearranged_list.append(
498
+ vision_tower_aux_feature_rearranged
499
+ )
500
+ vision_tower_aux_attention_masks_rearranged_list.append(
501
+ vision_tower_aux_attention_masks_rearranged
502
+ )
503
+ return (
504
+ vision_tower_aux_feature_rearranged_list,
505
+ vision_tower_aux_attention_masks_rearranged_list,
506
+ )
507
+
508
+ def rearrange_vision_tower_features_inference(
509
+ self, vision_tower_aux_feature_list, query_side_len, image_sizes, unpad=False
510
+ ):
511
+ vision_tower_aux_feature_rearranged_list = []
512
+ vision_tower_aux_attention_masks_rearranged_list = []
513
+ bs = vision_tower_aux_feature_list[0].shape[0]
514
+ for vision_tower_aux_feature in vision_tower_aux_feature_list:
515
+ aux_height = aux_width = int(vision_tower_aux_feature.shape[1] ** 0.5)
516
+ assert (aux_height // query_side_len) * query_side_len == aux_height
517
+
518
+ reduce_factor = aux_height // query_side_len
519
+
520
+ vision_tower_aux_feature_rearranged = []
521
+ vision_tower_aux_attention_masks_rearranged = []
522
+ for batch_i in range(bs):
523
+ image_size = image_sizes[batch_i]
524
+ cur_vision_tower_aux_feature = vision_tower_aux_feature[batch_i]
525
+
526
+ cur_vision_tower_aux_attention_masks_rearranged = torch.ones(
527
+ (1, aux_height, aux_width),
528
+ dtype=torch.bool,
529
+ device=cur_vision_tower_aux_feature.device,
530
+ )
531
+ cur_vision_tower_aux_feature_rearranged = (
532
+ cur_vision_tower_aux_feature.view(
533
+ 1,
534
+ query_side_len,
535
+ reduce_factor,
536
+ query_side_len,
537
+ reduce_factor,
538
+ -1,
539
+ )
540
+ )
541
+ cur_vision_tower_aux_feature_rearranged = (
542
+ cur_vision_tower_aux_feature_rearranged.permute(
543
+ 0, 1, 3, 2, 4, 5
544
+ ).contiguous()
545
+ )
546
+ if unpad:
547
+ cur_vision_tower_aux_feature_rearranged = unpad_image(
548
+ cur_vision_tower_aux_feature_rearranged, image_size
549
+ )
550
+ cur_vision_tower_aux_feature_rearranged = (
551
+ cur_vision_tower_aux_feature_rearranged.flatten(0, 2).flatten(1, 2)
552
+ ) # query_side_len*query_side_len X reduce_factor*reduce_factor X C
553
+
554
+ cur_vision_tower_aux_attention_masks_rearranged = unmask_attention_mask(
555
+ cur_vision_tower_aux_attention_masks_rearranged, image_size
556
+ )
557
+ cur_vision_tower_aux_attention_masks_rearranged = (
558
+ cur_vision_tower_aux_attention_masks_rearranged.view(
559
+ 1, query_side_len, reduce_factor, query_side_len, reduce_factor
560
+ )
561
+ .permute(0, 1, 3, 2, 4)
562
+ .contiguous()
563
+ )
564
+ if unpad:
565
+ cur_vision_tower_aux_attention_masks_rearranged = unpad_image(
566
+ cur_vision_tower_aux_attention_masks_rearranged, image_size
567
+ )
568
+ cur_vision_tower_aux_attention_masks_rearranged = (
569
+ cur_vision_tower_aux_attention_masks_rearranged.flatten(
570
+ 0, 2
571
+ ).flatten(1, 2)
572
+ )
573
+
574
+ cur_vision_tower_aux_attention_masks_rearranged[
575
+ cur_vision_tower_aux_attention_masks_rearranged.sum(-1) == 0
576
+ ] = True
577
+
578
+ vision_tower_aux_feature_rearranged.append(
579
+ cur_vision_tower_aux_feature_rearranged
580
+ )
581
+ vision_tower_aux_attention_masks_rearranged.append(
582
+ cur_vision_tower_aux_attention_masks_rearranged
583
+ )
584
+
585
+ vision_tower_aux_feature_rearranged = torch.cat(
586
+ vision_tower_aux_feature_rearranged, 0
587
+ )
588
+ vision_tower_aux_attention_masks_rearranged = torch.cat(
589
+ vision_tower_aux_attention_masks_rearranged, 0
590
+ )
591
+
592
+ vision_tower_aux_feature_rearranged_list.append(
593
+ vision_tower_aux_feature_rearranged
594
+ )
595
+ vision_tower_aux_attention_masks_rearranged_list.append(
596
+ vision_tower_aux_attention_masks_rearranged
597
+ )
598
+
599
+ return (
600
+ vision_tower_aux_feature_rearranged_list,
601
+ vision_tower_aux_attention_masks_rearranged_list,
602
+ )
603
+
604
+ def encode_images(self, image_aux_list, encode_type=None):
605
+ vision_tower_aux_list = self.get_model().get_vision_tower_aux_list()
606
+ image_aux_features_list = []
607
+ chunk_size = 64
608
+ if encode_type == "dino":
609
+ image_aux = image_aux_list[-1]
610
+ vision_tower_aux = vision_tower_aux_list[-1]
611
+ if image_aux.shape[0] > chunk_size:
612
+ image_aux_features_chunks = []
613
+ for start_idx in range(0, image_aux.shape[0], chunk_size):
614
+ end_idx = min(start_idx + chunk_size, image_aux.shape[0])
615
+ chunk = image_aux[start_idx:end_idx]
616
+ image_aux_features_chunk = vision_tower_aux(chunk)
617
+ image_aux_features_chunks.append(image_aux_features_chunk)
618
+ image_aux_features = torch.cat(image_aux_features_chunks, dim=0)
619
+ else:
620
+ image_aux_features = vision_tower_aux(image_aux)
621
+ return image_aux_features
622
+ elif encode_type == "siglip":
623
+ image_aux = image_aux_list[0]
624
+ vision_tower_aux = vision_tower_aux_list[0]
625
+ if image_aux.shape[0] > chunk_size:
626
+ image_aux_features_chunks = []
627
+ for start_idx in range(0, image_aux.shape[0], chunk_size):
628
+ end_idx = min(start_idx + chunk_size, image_aux.shape[0])
629
+ chunk = image_aux[start_idx:end_idx]
630
+ image_aux_features_chunk = vision_tower_aux(chunk)
631
+ image_aux_features_chunks.append(image_aux_features_chunk)
632
+ image_aux_features = torch.cat(image_aux_features_chunks, dim=0)
633
+ else:
634
+ image_aux_features = vision_tower_aux(image_aux)
635
+ return image_aux_features
636
+ else:
637
+ for image_aux, vision_tower_aux in zip(
638
+ image_aux_list, vision_tower_aux_list
639
+ ):
640
+ if image_aux.shape[0] > chunk_size:
641
+ image_aux_features_chunks = []
642
+ for start_idx in range(0, image_aux.shape[0], chunk_size):
643
+ end_idx = min(start_idx + chunk_size, image_aux.shape[0])
644
+ chunk = image_aux[start_idx:end_idx]
645
+ image_aux_features_chunk = vision_tower_aux(chunk)
646
+ image_aux_features_chunks.append(image_aux_features_chunk)
647
+ image_aux_features = torch.cat(image_aux_features_chunks, dim=0)
648
+ else:
649
+ image_aux_features = vision_tower_aux(image_aux)
650
+ image_aux_features_list.append(image_aux_features)
651
+ return image_aux_features_list
652
+
653
+ def select_frame(
654
+ self,
655
+ feature_list,
656
+ split_sizes,
657
+ input_ids,
658
+ new_image_aux_list,
659
+ image_sizes,
660
+ window_size=16,
661
+ threshold=0.83,
662
+ ):
663
+ dino_features_batch = torch.split(feature_list, split_sizes, dim=0)
664
+ new_image_aux_batch_0 = torch.split(new_image_aux_list[0], split_sizes, dim=0)
665
+ new_image_aux_batch_1 = torch.split(new_image_aux_list[1], split_sizes, dim=0)
666
+ new_split_sizes = []
667
+ selected_frames_all_0 = []
668
+ selected_frames_all_1 = []
669
+ selected_frames_feature_all = []
670
+ selected_frame_indices_all = []
671
+ for i_batch, frame_features in enumerate(dino_features_batch):
672
+ try:
673
+ if "llama" in self.get_model().config.model_type:
674
+ text_len = torch.where(input_ids[i_batch] == 128002)[-1][0]
675
+ else:
676
+ text_len = torch.where(input_ids[i_batch] == 151643)[-1][0]
677
+ except:
678
+ text_len = len(input_ids[i_batch])
679
+ original_width, original_height = image_sizes[i_batch]
680
+ if getattr(self.get_model().config, "highres", False):
681
+ token_per_frame = self.get_model().config.lowres_token ** 2
682
+ else:
683
+ token_per_frame = self.get_model().config.image_token_len
684
+ # current_height, current_width = token_per_side, token_per_side
685
+ # original_aspect_ratio = original_width / original_height
686
+ # current_aspect_ratio = current_width / current_height
687
+ # if original_aspect_ratio > current_aspect_ratio:
688
+ # scale_factor = current_width / original_width
689
+ # new_height = int(original_height * scale_factor)
690
+ # padding = math.ceil((current_height - new_height) / 2.0)
691
+ # token_per_frame = (
692
+ # current_height - padding * 2
693
+ # ) * token_per_side + token_per_side
694
+ # else:
695
+ # scale_factor = current_height / original_height
696
+ # new_width = int(original_width * scale_factor)
697
+ # padding = math.ceil((current_width - new_width) / 2.0)
698
+ # token_per_frame = (current_width - padding * 2) * token_per_side + (
699
+ # current_width - padding * 2
700
+ # )
701
+ # token_per_frame = (
702
+ # token_per_side**2 if token_per_frame < 1 else token_per_frame
703
+ # )
704
+ max_num_frames = max(
705
+ 1,
706
+ (
707
+ self.get_model().config.tokenizer_model_max_length
708
+ - text_len
709
+ - getattr(self.get_model().config, "inference_max_length", 16)
710
+ )
711
+ // token_per_frame,
712
+ )
713
+ if len(frame_features) < max_num_frames:
714
+ selected_frames_all_0.append(new_image_aux_batch_0[i_batch])
715
+ selected_frames_all_1.append(new_image_aux_batch_1[i_batch])
716
+ selected_frames_feature_all.append(frame_features)
717
+ new_split_sizes.append(len(frame_features))
718
+ selected_frame_indices_all.append(torch.arange(len(frame_features)))
719
+ continue
720
+
721
+ num_segments = len(frame_features) // window_size
722
+ if num_segments == 0:
723
+ query_feature = frame_features.flatten(1, 2)
724
+ query_feature = query_feature / torch.norm(
725
+ (query_feature), dim=1, keepdim=True
726
+ )
727
+ similarities = torch.mean(query_feature @ query_feature.T, dim=1)
728
+ similarities[len(frame_features) // 2] = 0
729
+ indices = torch.where(similarities < threshold)[0]
730
+ selected_frame_indices_all.append(indices)
731
+ selected_frames_all_0.append(new_image_aux_batch_0[i_batch][indices])
732
+ selected_frames_all_1.append(new_image_aux_batch_1[i_batch][indices])
733
+ selected_frames_feature_all.append(frame_features[indices])
734
+ new_split_sizes.append(len(indices))
735
+ continue
736
+ segments_frames_0 = []
737
+ segments_frames_1 = []
738
+ segments_features = []
739
+ for start_idx in range(0, len(frame_features), window_size):
740
+ end_idx = min(start_idx + window_size, len(frame_features))
741
+ segments_frames_0.append(
742
+ new_image_aux_batch_0[i_batch][start_idx:end_idx]
743
+ )
744
+ segments_frames_1.append(
745
+ new_image_aux_batch_1[i_batch][start_idx:end_idx]
746
+ )
747
+ segments_features.append(frame_features[start_idx:end_idx])
748
+ selected_frames_0 = []
749
+ selected_frames_1 = []
750
+ selected_features = []
751
+ selected_frame_indices = []
752
+ for i, segment in enumerate(segments_features):
753
+ query_feature = segment.flatten(1, 2)
754
+ query_feature = query_feature / torch.norm(
755
+ (query_feature), dim=1, keepdim=True
756
+ )
757
+ similarities = torch.mean(query_feature @ query_feature.T, dim=1)
758
+ similarities[len(segment) // 2] = 0
759
+ indices = torch.where(similarities < threshold)[0]
760
+ selected_frames_0.append(segments_frames_0[i][indices])
761
+ selected_frames_1.append(segments_frames_1[i][indices])
762
+ selected_features.append(segment[indices])
763
+ selected_frame_indices.extend(indices + i * window_size)
764
+ selected_frames_0 = torch.cat(selected_frames_0, dim=0)
765
+ selected_frames_1 = torch.cat(selected_frames_1, dim=0)
766
+ selected_features = torch.cat(selected_features, dim=0)
767
+ selected_frame_indices = torch.tensor(selected_frame_indices)
768
+ # ablation
769
+ max_num_frames = 400 # in case of OOM
770
+ if len(selected_frames_0) > max_num_frames:
771
+ interval = len(selected_frames_0) / float(max_num_frames)
772
+ indices = [int(interval * i) for i in range(max_num_frames)]
773
+ new_split_sizes.append(len(indices))
774
+ selected_frames_all_0.append(selected_frames_0[indices])
775
+ selected_frames_all_1.append(selected_frames_1[indices])
776
+ selected_frames_feature_all.append(selected_features[indices])
777
+ selected_frame_indices = selected_frame_indices[indices]
778
+ else:
779
+ new_split_sizes.append(len(selected_frames_0))
780
+ selected_frames_all_0.append(selected_frames_0)
781
+ selected_frames_all_1.append(selected_frames_1)
782
+ selected_frames_feature_all.append(selected_features)
783
+ selected_frame_indices_all.append(selected_frame_indices)
784
+ selected_frames_all_0 = torch.cat(selected_frames_all_0, dim=0)
785
+ selected_frames_all_1 = torch.cat(selected_frames_all_1, dim=0)
786
+ selected_frames_feature_all = torch.cat(selected_frames_feature_all, dim=0)
787
+ return (
788
+ selected_frames_feature_all,
789
+ new_split_sizes,
790
+ [selected_frames_all_0, selected_frames_all_1],
791
+ selected_frame_indices_all,
792
+ )
793
+
794
+ def prepare_inputs_labels_for_multimodal(
795
+ self,
796
+ input_ids,
797
+ position_ids,
798
+ attention_mask,
799
+ past_key_values,
800
+ labels,
801
+ images,
802
+ image_aux_attention_masks_list=None,
803
+ image_sizes=None,
804
+ ):
805
+ # vision_tower = self.get_vision_tower()
806
+ vision_tower_aux_list = self.get_model().get_vision_tower_aux_list()
807
+ if vision_tower_aux_list is None or images is None or input_ids.shape[1] == 1:
808
+ return (
809
+ input_ids,
810
+ position_ids,
811
+ attention_mask,
812
+ past_key_values,
813
+ None,
814
+ labels,
815
+ None,
816
+ None,
817
+ None,
818
+ None,
819
+ )
820
+
821
+ image_aux_list = images
822
+
823
+ split_sizes = None
824
+
825
+ if type(image_aux_list[0]) is list or image_aux_list[0].ndim == 5:
826
+ split_sizes_ori = [
827
+ 1 if image.ndim == 3 else image.shape[0] for image in image_aux_list[0]
828
+ ]
829
+ new_image_aux_list = []
830
+ for image_aux in image_aux_list:
831
+ if type(image_aux) is list:
832
+ image_aux = [
833
+ x.unsqueeze(0) if x.ndim == 3 else x for x in image_aux
834
+ ]
835
+ concat_image_aux = torch.cat([image for image in image_aux], dim=0)
836
+ new_image_aux_list.append(concat_image_aux)
837
+ image_aux_features_dino = self.encode_images(
838
+ new_image_aux_list, encode_type="dino"
839
+ )
840
+
841
+ (
842
+ image_aux_features_dino,
843
+ split_sizes,
844
+ new_image_aux_list,
845
+ selected_frame_indices_all,
846
+ ) = self.select_frame(
847
+ image_aux_features_dino,
848
+ split_sizes_ori,
849
+ input_ids,
850
+ new_image_aux_list,
851
+ image_sizes,
852
+ threshold=getattr(self.get_model().config, "dino_threshold", 0.83),
853
+ )
854
+
855
+ image_aux_features_siglip = self.encode_images(
856
+ new_image_aux_list, encode_type="siglip"
857
+ )
858
+ image_aux_features_list = [
859
+ image_aux_features_siglip,
860
+ image_aux_features_dino,
861
+ ]
862
+
863
+ bs = image_aux_features_list[0].shape[0]
864
+ dtype = new_image_aux_list[0].dtype
865
+
866
+ frame_sizes = []
867
+ for i in range(len(image_sizes)):
868
+ for j in range(split_sizes[i]):
869
+ frame_sizes.append(image_sizes[i])
870
+ image_sizes = frame_sizes
871
+ else:
872
+ image_aux_features_list = self.encode_images(image_aux_list)
873
+ bs = image_aux_list[0].shape[0]
874
+ dtype = image_aux_list[0].dtype
875
+
876
+ image_token_len = self.get_model().config.image_token_len
877
+ query_num_list = self.get_model().config.query_num_list
878
+
879
+ final_height = final_width = int(image_token_len**0.5)
880
+
881
+ final_image_features_list = []
882
+ final_image_features_down_list = []
883
+
884
+ # only needed for sva
885
+ vision_tower_aux_feature_list_final = None
886
+ vision_tower_aux_attention_masks_list_final = None
887
+ global_context_feature_final = None
888
+
889
+ if self.get_model().config.mm_projector_type == "sva":
890
+ vision_tower_aux_feature_list = []
891
+ vision_tower_aux_attention_masks_list = []
892
+ # get vision tokens from each vision tower
893
+ for aux_i in range(len(vision_tower_aux_list)):
894
+ image_aux_features = image_aux_features_list[aux_i]
895
+
896
+ image_aux_features = getattr(
897
+ self.get_model(), "mm_projector_aux_{}".format(aux_i)
898
+ )(image_aux_features).to(dtype)
899
+ if aux_i == 0:
900
+ global_context_feature = image_aux_features.mean(1).view(
901
+ bs, 1, 1, -1
902
+ )
903
+
904
+ vision_tower_aux_feature_list.append(image_aux_features)
905
+ input_mix_res = True
906
+ input_high_res = True
907
+ # perform vision sampling for each query group
908
+ for query_group_i, query_num in enumerate(query_num_list):
909
+ query_features_i = (
910
+ self.get_model()
911
+ .vision_query[query_group_i, :]
912
+ .view(1, 1, 1, -1)
913
+ .expand(bs, query_num, -1, -1)
914
+ )
915
+ global_context_feature_i = global_context_feature.expand(
916
+ -1, query_num, 1, -1
917
+ ).flatten(0, 1)
918
+ query_side_len = int(query_num**0.5)
919
+ if IS_XLA_AVAILABLE:
920
+ (
921
+ vision_tower_aux_feature_list_i,
922
+ vision_tower_aux_attention_masks_list_i,
923
+ ) = self.rearrange_vision_tower_features_train(
924
+ vision_tower_aux_feature_list,
925
+ image_aux_attention_masks_list,
926
+ query_side_len,
927
+ )
928
+ else:
929
+ (
930
+ vision_tower_aux_feature_list_i,
931
+ vision_tower_aux_attention_masks_list_i,
932
+ ) = self.rearrange_vision_tower_features_inference(
933
+ vision_tower_aux_feature_list, query_side_len, image_sizes
934
+ )
935
+
936
+ query_features_i = getattr(
937
+ self.get_model(), "vision_sampler_{}".format(query_group_i)
938
+ )(
939
+ query_features_i.flatten(0, 1),
940
+ global_context_feature_i,
941
+ *vision_tower_aux_feature_list_i,
942
+ *vision_tower_aux_attention_masks_list_i,
943
+ )
944
+ query_features_i = query_features_i.view(bs, query_num, -1)
945
+
946
+ if split_sizes is not None:
947
+ try:
948
+ if "llama" in self.get_model().config.model_type:
949
+ text_len = torch.where(input_ids[0] == 128002)[-1][0]
950
+ else:
951
+ text_len = torch.where(input_ids[0] == 151643)[-1][0]
952
+ except:
953
+ text_len = len(input_ids[0])
954
+ max_visual_len = (
955
+ self.get_model().config.tokenizer_model_max_length
956
+ - text_len
957
+ - getattr(self.get_model().config, "inference_max_length", 16)
958
+ )
959
+ max_num_frames = max(
960
+ 1,
961
+ math.floor(max_visual_len // (final_height * final_width)),
962
+ )
963
+ max_num_frames_low = max(
964
+ 1,
965
+ math.floor(
966
+ max_visual_len
967
+ // (self.get_model().config.lowres_token ** 2)
968
+ ),
969
+ )
970
+ if split_sizes[0] < max_num_frames:
971
+ input_mix_res = False
972
+ elif split_sizes[0] > max_num_frames_low:
973
+ input_mix_res = False
974
+ input_high_res = False
975
+
976
+ # input_mix_res = False # ablation
977
+
978
+ if (getattr(self.config, "highres", False)) and input_mix_res:
979
+ _query_features_i = (
980
+ query_features_i.permute(0, 2, 1)
981
+ .contiguous()
982
+ .view(bs, -1, query_side_len, query_side_len)
983
+ )
984
+ _query_features_i = F.interpolate(
985
+ _query_features_i.float(),
986
+ size=(
987
+ self.get_model().config.lowres_token,
988
+ self.get_model().config.lowres_token,
989
+ ),
990
+ mode="bilinear",
991
+ align_corners=False,
992
+ ).to(dtype=query_features_i.dtype)
993
+ _query_features_i = (
994
+ _query_features_i.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
995
+ )
996
+ final_image_features_down_list.append(_query_features_i)
997
+
998
+ # interpolate to the final target size
999
+ if query_side_len != final_height:
1000
+ query_features_i = (
1001
+ query_features_i.permute(0, 2, 1)
1002
+ .contiguous()
1003
+ .view(bs, -1, query_side_len, query_side_len)
1004
+ )
1005
+ if input_high_res:
1006
+ query_features_i = F.interpolate(
1007
+ query_features_i.float(),
1008
+ size=(final_height, final_width),
1009
+ mode="bilinear",
1010
+ align_corners=False,
1011
+ ).to(dtype=query_features_i.dtype)
1012
+ else:
1013
+ query_features_i = F.interpolate(
1014
+ query_features_i.float(),
1015
+ size=(8, 8),
1016
+ mode="bilinear",
1017
+ align_corners=False,
1018
+ ).to(dtype=query_features_i.dtype)
1019
+ query_features_i = (
1020
+ query_features_i.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
1021
+ )
1022
+ final_image_features_list.append(query_features_i)
1023
+
1024
+ if IS_XLA_AVAILABLE:
1025
+ (
1026
+ vision_tower_aux_feature_list_final,
1027
+ vision_tower_aux_attention_masks_list_final,
1028
+ ) = self.rearrange_vision_tower_features_train(
1029
+ vision_tower_aux_feature_list,
1030
+ image_aux_attention_masks_list,
1031
+ final_height,
1032
+ )
1033
+ global_context_feature_final = global_context_feature.expand(
1034
+ -1, final_height * final_width, 1, -1
1035
+ ).flatten(0, 1)
1036
+ else:
1037
+ final_image_features_list = image_aux_features_list
1038
+
1039
+ image_features = torch.cat(final_image_features_list, -1)
1040
+ image_features = self.get_model().mm_projector(image_features).to(dtype)
1041
+
1042
+ if (getattr(self.config, "highres", False)) and input_mix_res:
1043
+ image_features_down = torch.cat(final_image_features_down_list, -1)
1044
+ image_features_down = (
1045
+ self.get_model().mm_projector(image_features_down).to(dtype)
1046
+ )
1047
+
1048
+ if IS_XLA_AVAILABLE:
1049
+ image_features = image_features.view(
1050
+ image_features.shape[0], final_height, final_width, -1
1051
+ )
1052
+ image_features = torch.cat(
1053
+ (
1054
+ image_features,
1055
+ self.model.image_newline[None, None, None, :].expand(
1056
+ image_features.shape[0], final_height, 1, -1
1057
+ ),
1058
+ ),
1059
+ dim=2,
1060
+ )
1061
+ image_features = image_features.flatten(1, 2)
1062
+ final_size = [(final_height, final_width)] * bs
1063
+
1064
+ else:
1065
+ image_features = image_features.view(bs, final_height, final_width, -1)
1066
+ if (getattr(self.config, "highres", False)) and input_mix_res:
1067
+ image_features_down = image_features_down.view(
1068
+ bs,
1069
+ self.get_model().config.lowres_token,
1070
+ self.get_model().config.lowres_token,
1071
+ -1,
1072
+ )
1073
+ image_features_unpadded = []
1074
+ image_features_downsample = []
1075
+ final_size = []
1076
+ if self.get_model().config.mm_projector_type == "sva":
1077
+ (
1078
+ vision_tower_aux_feature_list_final,
1079
+ vision_tower_aux_attention_masks_list_final,
1080
+ ) = self.rearrange_vision_tower_features_inference(
1081
+ vision_tower_aux_feature_list, final_height, image_sizes, unpad=True
1082
+ )
1083
+ global_context_feature_final = []
1084
+ for batch_i in range(bs):
1085
+ cur_image_feature = image_features[batch_i]
1086
+ image_size = image_sizes[batch_i]
1087
+
1088
+ cur_image_feature = unpad_image(
1089
+ cur_image_feature.unsqueeze(0), image_size
1090
+ )
1091
+
1092
+ cur_h, cur_w = cur_image_feature.shape[1:3]
1093
+ try: # fix bug for some invalid image
1094
+ cur_image_feature = cur_image_feature.view(1, cur_h, cur_w, -1)
1095
+ final_size.append((cur_h, cur_w))
1096
+ except:
1097
+ # print(f"invalid after unpad {image_features[batch_i].shape}, {image_sizes[batch_i]}", flush=True)
1098
+ cur_image_feature = image_features[batch_i].unsqueeze(0)
1099
+ image_size = image_sizes[batch_i]
1100
+ cur_h, cur_w = cur_image_feature.shape[1:3]
1101
+ cur_image_feature = cur_image_feature.view(1, cur_h, cur_w, -1)
1102
+ final_size.append((cur_h, cur_w))
1103
+
1104
+ if (getattr(self.config, "highres", False)) and input_mix_res:
1105
+ cur_image_feature_down = unpad_image(
1106
+ image_features_down[batch_i].unsqueeze(0),
1107
+ (
1108
+ int(
1109
+ image_size[0]
1110
+ / (
1111
+ image_token_len**0.5
1112
+ / self.get_model().config.lowres_token
1113
+ )
1114
+ ),
1115
+ int(
1116
+ image_size[1]
1117
+ / (
1118
+ image_token_len**0.5
1119
+ / self.get_model().config.lowres_token
1120
+ )
1121
+ ),
1122
+ ),
1123
+ )
1124
+ _cur_h, _cur_w = cur_image_feature_down.shape[1:3]
1125
+
1126
+ try: # fix bug for some invalid image
1127
+ cur_image_feature_down = cur_image_feature_down.view(
1128
+ 1, _cur_h, _cur_w, -1
1129
+ )
1130
+ except:
1131
+ print("invalid after unpad", flush=True)
1132
+ cur_image_feature_down = image_features_down[batch_i].unsqueeze(
1133
+ 0
1134
+ )
1135
+ _cur_h, _cur_w = cur_image_feature_down.shape[1:3]
1136
+ cur_image_feature_down = cur_image_feature_down.view(
1137
+ 1, _cur_h, _cur_w, -1
1138
+ )
1139
+
1140
+ cur_image_feature_down = torch.cat(
1141
+ (
1142
+ cur_image_feature_down,
1143
+ self.model.image_newline.view(1, 1, 1, -1)
1144
+ .expand(1, _cur_h, 1, -1)
1145
+ .to(cur_image_feature_down.device),
1146
+ ),
1147
+ dim=2,
1148
+ ).flatten(1, 2)
1149
+
1150
+ if split_sizes is None and getattr(self.config, "frame_pos", False):
1151
+ frame_pos = (
1152
+ self.get_model()
1153
+ .get_frame_pos(torch.arange(1))
1154
+ .to(cur_image_feature_down.device)
1155
+ .to(cur_image_feature_down.dtype)
1156
+ )
1157
+ cur_image_feature_down += frame_pos
1158
+
1159
+ image_features_downsample.append(cur_image_feature_down.squeeze(0))
1160
+
1161
+ cur_image_feature = torch.cat(
1162
+ (
1163
+ cur_image_feature,
1164
+ self.model.image_newline.view(1, 1, 1, -1)
1165
+ .expand(1, cur_h, 1, -1)
1166
+ .to(cur_image_feature.device),
1167
+ ),
1168
+ dim=2,
1169
+ )
1170
+
1171
+ if split_sizes is None and getattr(self.config, "frame_pos", False):
1172
+ frame_pos = (
1173
+ self.get_model()
1174
+ .get_frame_pos(torch.arange(1))
1175
+ .to(cur_image_feature.device)
1176
+ .to(cur_image_feature.dtype)
1177
+ )
1178
+ cur_image_feature += frame_pos
1179
+
1180
+ cur_image_feature = cur_image_feature.flatten(1, 2)
1181
+ image_features_unpadded.append(cur_image_feature.squeeze(0))
1182
+
1183
+ if self.get_model().config.mm_projector_type == "sva":
1184
+ cur_global_context_feature = global_context_feature[batch_i].expand(
1185
+ cur_h * cur_w, 1, -1
1186
+ )
1187
+ global_context_feature_final.append(cur_global_context_feature)
1188
+ if self.get_model().config.mm_projector_type == "sva":
1189
+ global_context_feature_final = torch.cat(
1190
+ global_context_feature_final, 0
1191
+ )
1192
+
1193
+ if (getattr(self.config, "highres", False)) and input_mix_res:
1194
+ image_features = image_features_downsample
1195
+ else:
1196
+ image_features = image_features_unpadded
1197
+
1198
+ # TODO: image start / end is not implemented here to support pretraining.
1199
+ if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
1200
+ self.config, "mm_use_im_start_end", False
1201
+ ):
1202
+ raise NotImplementedError
1203
+
1204
+ split_image_features_unpadded = None
1205
+ frame_split_sizes = None
1206
+
1207
+ if split_sizes is not None:
1208
+ split_image_features = []
1209
+ split_image_features_unpadded = (
1210
+ []
1211
+ if (getattr(self.config, "highres", False)) and input_mix_res
1212
+ else None
1213
+ )
1214
+ start_idx = 0
1215
+ for split_batch_idx, split_size in enumerate(split_sizes):
1216
+ if isinstance(image_features[start_idx : start_idx + split_size], list):
1217
+ if getattr(self.config, "frame_pos", False):
1218
+ frame_feature = torch.cat(
1219
+ image_features[start_idx : start_idx + split_size], dim=0
1220
+ ).reshape(split_size, -1, image_features[0].shape[-1])
1221
+ frame_pos = (
1222
+ self.get_model()
1223
+ .get_frame_pos(selected_frame_indices_all[split_batch_idx])
1224
+ .to(frame_feature.device)
1225
+ .to(frame_feature.dtype)
1226
+ )
1227
+ frame_feature += frame_pos
1228
+ split_image_features.append(
1229
+ frame_feature.reshape(-1, image_features[0].shape[-1])
1230
+ )
1231
+ else:
1232
+ split_image_features.append(
1233
+ torch.cat(
1234
+ image_features[start_idx : start_idx + split_size],
1235
+ dim=0,
1236
+ )
1237
+ )
1238
+ if (getattr(self.config, "highres", False)) and input_mix_res:
1239
+ if getattr(self.config, "frame_pos", False):
1240
+ frame_feature = torch.cat(
1241
+ image_features_unpadded[
1242
+ start_idx : start_idx + split_size
1243
+ ],
1244
+ dim=0,
1245
+ ).reshape(split_size, -1, image_features[0].shape[-1])
1246
+ frame_pos = (
1247
+ self.get_model()
1248
+ .get_frame_pos(
1249
+ selected_frame_indices_all[split_batch_idx]
1250
+ )
1251
+ .to(frame_feature.device)
1252
+ .to(frame_feature.dtype)
1253
+ )
1254
+ frame_feature += frame_pos
1255
+ split_image_features_unpadded.append(
1256
+ frame_feature.reshape(-1, image_features[0].shape[-1])
1257
+ )
1258
+ else:
1259
+ split_image_features_unpadded.append(
1260
+ torch.cat(
1261
+ image_features_unpadded[
1262
+ start_idx : start_idx + split_size
1263
+ ],
1264
+ dim=0,
1265
+ )
1266
+ )
1267
+ else:
1268
+ if getattr(self.config, "frame_pos", False):
1269
+ frame_feature = image_features[
1270
+ start_idx : start_idx + split_size
1271
+ ].reshape(split_size, -1, image_features[0].shape[-1])
1272
+ frame_pos = (
1273
+ self.get_model()
1274
+ .get_frame_pos(selected_frame_indices_all[split_batch_idx])
1275
+ .to(frame_feature.device)
1276
+ .to(frame_feature.dtype)
1277
+ )
1278
+ frame_feature += frame_pos
1279
+ split_image_features.append(
1280
+ frame_feature.reshape(-1, image_features[0].shape[-1])
1281
+ )
1282
+ else:
1283
+ split_image_features.append(
1284
+ image_features[start_idx : start_idx + split_size]
1285
+ )
1286
+ if (getattr(self.config, "highres", False)) and input_mix_res:
1287
+ if getattr(self.config, "frame_pos", False):
1288
+ frame_feature = image_features_unpadded[
1289
+ start_idx : start_idx + split_size
1290
+ ]
1291
+ frame_pos = (
1292
+ self.get_model()
1293
+ .get_frame_pos(
1294
+ selected_frame_indices_all[split_batch_idx]
1295
+ )
1296
+ .to(frame_feature.device)
1297
+ .to(frame_feature.dtype)
1298
+ )
1299
+ frame_feature += frame_pos
1300
+ split_image_features_unpadded.append(
1301
+ frame_feature.reshape(-1, image_features[0].shape[-1])
1302
+ )
1303
+ else:
1304
+ split_image_features_unpadded.append(
1305
+ image_features_unpadded[
1306
+ start_idx : start_idx + split_size
1307
+ ]
1308
+ )
1309
+ start_idx += split_size
1310
+ image_features = split_image_features
1311
+ frame_split_sizes = split_sizes
1312
+
1313
+ _labels = labels
1314
+ _position_ids = position_ids
1315
+ _attention_mask = attention_mask
1316
+ if attention_mask is None:
1317
+ attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
1318
+ else:
1319
+ attention_mask = attention_mask.bool()
1320
+ if position_ids is None:
1321
+ position_ids = torch.arange(
1322
+ 0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
1323
+ )
1324
+ if labels is None:
1325
+ labels = torch.full_like(input_ids, IGNORE_INDEX)
1326
+
1327
+ # remove the padding using attention_mask -- FIXME
1328
+ _input_ids = input_ids
1329
+
1330
+ attention_mask = attention_mask | (input_ids == IMAGE_TOKEN_INDEX)
1331
+
1332
+ input_ids = [
1333
+ cur_input_ids[cur_attention_mask]
1334
+ for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
1335
+ ]
1336
+ labels = [
1337
+ cur_labels[cur_attention_mask]
1338
+ for cur_labels, cur_attention_mask in zip(labels, attention_mask)
1339
+ ]
1340
+
1341
+ new_input_embeds = []
1342
+ new_labels = []
1343
+ image_token_indices_batch = []
1344
+ cur_image_idx = 0
1345
+ for batch_idx, cur_input_ids in enumerate(input_ids):
1346
+ num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
1347
+ if num_images == 0:
1348
+ cur_image_features = image_features[cur_image_idx]
1349
+ cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
1350
+ cur_input_embeds = torch.cat(
1351
+ [cur_input_embeds_1, cur_image_features[0:0]], dim=0
1352
+ )
1353
+ new_input_embeds.append(cur_input_embeds)
1354
+ new_labels.append(labels[batch_idx])
1355
+ cur_image_idx += 1
1356
+ continue
1357
+
1358
+ image_token_indices = (
1359
+ [-1]
1360
+ + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()
1361
+ + [cur_input_ids.shape[0]]
1362
+ )
1363
+ image_token_indices_batch.append(
1364
+ torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()[0]
1365
+ )
1366
+ cur_input_ids_noim = []
1367
+ cur_labels = labels[batch_idx]
1368
+ cur_labels_noim = []
1369
+ for i in range(len(image_token_indices) - 1):
1370
+ cur_input_ids_noim.append(
1371
+ cur_input_ids[
1372
+ image_token_indices[i] + 1 : image_token_indices[i + 1]
1373
+ ]
1374
+ )
1375
+ cur_labels_noim.append(
1376
+ cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]
1377
+ )
1378
+ split_sizes = [x.shape[0] for x in cur_labels_noim]
1379
+ cur_input_embeds = self.get_model().embed_tokens(
1380
+ torch.cat(cur_input_ids_noim)
1381
+ )
1382
+ cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
1383
+ cur_new_input_embeds = []
1384
+ cur_new_labels = []
1385
+
1386
+ text_len = sum([x.shape[0] for x in cur_input_embeds_no_im])
1387
+ visual_len = len(image_features[cur_image_idx])
1388
+ max_visual_len = (
1389
+ self.get_model().config.tokenizer_model_max_length
1390
+ - getattr(self.get_model().config, "inference_max_length", 16)
1391
+ - text_len
1392
+ )
1393
+ mix_token = False
1394
+
1395
+ # ablation mix
1396
+ if (
1397
+ input_mix_res
1398
+ and (
1399
+ self.get_model().config.image_token_len
1400
+ > getattr(self.get_model().config, "lowres_token", 8) ** 2
1401
+ )
1402
+ and frame_split_sizes is not None
1403
+ and getattr(self.config, "highres", False)
1404
+ ):
1405
+ if max_visual_len > visual_len:
1406
+ visual_emb = image_features[cur_image_idx]
1407
+ text_emb = cur_input_embeds_no_im[-1]
1408
+ highres_num = math.floor(
1409
+ (max_visual_len - visual_len)
1410
+ / (
1411
+ split_image_features_unpadded[cur_image_idx].shape[0]
1412
+ // frame_split_sizes[cur_image_idx]
1413
+ - visual_emb.shape[0] // frame_split_sizes[cur_image_idx]
1414
+ )
1415
+ )
1416
+ if highres_num >= 1:
1417
+ mix_token = True
1418
+ sim = torch.matmul(visual_emb, text_emb.transpose(0, 1)).mean(
1419
+ dim=-1
1420
+ )
1421
+ sim_frame = sim.reshape(
1422
+ frame_split_sizes[cur_image_idx], -1
1423
+ ).mean(dim=-1)
1424
+ highres_num = min(highres_num, sim_frame.shape[0])
1425
+ top_values, top_indices = torch.topk(sim_frame, highres_num)
1426
+ if len(top_indices) > 0:
1427
+ sorted_indices = torch.sort(top_indices)[1]
1428
+ top_indices = top_indices[sorted_indices]
1429
+ visual_emb_frame = image_features[cur_image_idx].reshape(
1430
+ frame_split_sizes[cur_image_idx],
1431
+ -1,
1432
+ image_features[cur_image_idx].shape[-1],
1433
+ )
1434
+ visual_emb_frame_highres = split_image_features_unpadded[
1435
+ cur_image_idx
1436
+ ].reshape(
1437
+ frame_split_sizes[cur_image_idx],
1438
+ -1,
1439
+ split_image_features_unpadded[cur_image_idx].shape[-1],
1440
+ )
1441
+ current_point = 0
1442
+ mix_visual_emb_frame = []
1443
+ for frame_i in range(len(visual_emb_frame)):
1444
+ if current_point > len(top_indices) - 1:
1445
+ mix_visual_emb_frame.append(
1446
+ visual_emb_frame[frame_i]
1447
+ )
1448
+ continue
1449
+ if frame_i == top_indices[current_point]:
1450
+ mix_visual_emb_frame.append(
1451
+ visual_emb_frame_highres[frame_i]
1452
+ )
1453
+ current_point += 1
1454
+ else:
1455
+ mix_visual_emb_frame.append(
1456
+ visual_emb_frame[frame_i]
1457
+ )
1458
+ image_features[cur_image_idx] = torch.cat(
1459
+ mix_visual_emb_frame, dim=0
1460
+ )
1461
+ # ablation drop
1462
+
1463
+ if (
1464
+ max_visual_len < visual_len
1465
+ and frame_split_sizes is not None
1466
+ and not mix_token
1467
+ ):
1468
+ visual_emb_frame = image_features[cur_image_idx].reshape(
1469
+ frame_split_sizes[cur_image_idx],
1470
+ -1,
1471
+ image_features[cur_image_idx].shape[-1],
1472
+ )
1473
+
1474
+ sim = F.cosine_similarity(
1475
+ visual_emb_frame[:-1],
1476
+ visual_emb_frame[1:],
1477
+ dim=-1,
1478
+ )
1479
+
1480
+ new_visual_emb_frames = []
1481
+ for start_idx in range(0, len(visual_emb_frame), 8):
1482
+ end_idx = min(start_idx + 8, len(visual_emb_frame))
1483
+ chunk_feature = visual_emb_frame[start_idx:end_idx] # 8, HW, C
1484
+ if len(chunk_feature) == 1:
1485
+ new_visual_emb_frames.append(chunk_feature[0])
1486
+ continue
1487
+ sim = F.cosine_similarity(
1488
+ chunk_feature[0]
1489
+ .unsqueeze(0)
1490
+ .repeat_interleave(len(chunk_feature[1:]), dim=0),
1491
+ chunk_feature[1:],
1492
+ dim=-1,
1493
+ )
1494
+ new_visual_emb_frame = torch.cat(
1495
+ [
1496
+ chunk_feature[0],
1497
+ chunk_feature[1:].flatten(0, 1)[
1498
+ sim.flatten(0, 1)
1499
+ < getattr(
1500
+ self.get_model().config, "drop_threshold", 0.7
1501
+ )
1502
+ ],
1503
+ ],
1504
+ dim=0,
1505
+ )
1506
+ new_visual_emb_frames.append(new_visual_emb_frame)
1507
+
1508
+ reduced_visual_len = sum([x.shape[0] for x in new_visual_emb_frames])
1509
+
1510
+ if reduced_visual_len > max_visual_len:
1511
+ force_remove = math.ceil(
1512
+ (reduced_visual_len - max_visual_len)
1513
+ / len(new_visual_emb_frames)
1514
+ )
1515
+ for chunk_i in range(len(new_visual_emb_frames)):
1516
+ new_visual_emb_frames[chunk_i] = new_visual_emb_frames[chunk_i][
1517
+ :-force_remove
1518
+ ]
1519
+ new_visual_emb_frames = torch.cat(new_visual_emb_frames, dim=0)
1520
+ else:
1521
+ new_visual_emb_frames = torch.cat(new_visual_emb_frames, dim=0)
1522
+
1523
+ image_features[cur_image_idx] = new_visual_emb_frames[:max_visual_len]
1524
+
1525
+ for i in range(num_images + 1):
1526
+ cur_new_input_embeds.append(cur_input_embeds_no_im[i])
1527
+ cur_new_labels.append(cur_labels_noim[i])
1528
+ if i < num_images:
1529
+ cur_image_features = image_features[cur_image_idx]
1530
+ cur_image_idx += 1
1531
+ cur_new_input_embeds.append(cur_image_features)
1532
+ cur_new_labels.append(
1533
+ torch.full(
1534
+ (cur_image_features.shape[0],),
1535
+ IGNORE_INDEX,
1536
+ device=cur_labels.device,
1537
+ dtype=cur_labels.dtype,
1538
+ )
1539
+ )
1540
+
1541
+ cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
1542
+
1543
+ cur_new_input_embeds = torch.cat(cur_new_input_embeds)
1544
+ cur_new_labels = torch.cat(cur_new_labels)
1545
+
1546
+ new_input_embeds.append(cur_new_input_embeds)
1547
+ new_labels.append(cur_new_labels)
1548
+
1549
+ # Truncate sequences to max length as image embeddings can make the sequence longer
1550
+ tokenizer_model_max_length = getattr(
1551
+ self.config, "tokenizer_model_max_length", None
1552
+ )
1553
+ if tokenizer_model_max_length is not None:
1554
+ new_input_embeds = [
1555
+ x[:tokenizer_model_max_length] for x in new_input_embeds
1556
+ ]
1557
+ new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
1558
+
1559
+ # Combine them
1560
+ max_len = max(x.shape[0] for x in new_input_embeds)
1561
+ batch_size = len(new_input_embeds)
1562
+
1563
+ new_input_embeds_padded = []
1564
+ new_labels_padded = torch.full(
1565
+ (batch_size, max_len),
1566
+ IGNORE_INDEX,
1567
+ dtype=new_labels[0].dtype,
1568
+ device=new_labels[0].device,
1569
+ )
1570
+ attention_mask = torch.zeros(
1571
+ (batch_size, max_len),
1572
+ dtype=attention_mask.dtype,
1573
+ device=attention_mask.device,
1574
+ )
1575
+ position_ids = torch.zeros(
1576
+ (batch_size, max_len),
1577
+ dtype=position_ids.dtype,
1578
+ device=position_ids.device,
1579
+ )
1580
+
1581
+ for i, (cur_new_embed, cur_new_labels) in enumerate(
1582
+ zip(new_input_embeds, new_labels)
1583
+ ):
1584
+ cur_len = cur_new_embed.shape[0]
1585
+ if getattr(self.config, "tokenizer_padding_side", "right") == "left":
1586
+ new_input_embeds_padded.append(
1587
+ torch.cat(
1588
+ (
1589
+ torch.zeros(
1590
+ (max_len - cur_len, cur_new_embed.shape[1]),
1591
+ dtype=cur_new_embed.dtype,
1592
+ device=cur_new_embed.device,
1593
+ ),
1594
+ cur_new_embed,
1595
+ ),
1596
+ dim=0,
1597
+ )
1598
+ )
1599
+ if cur_len > 0:
1600
+ new_labels_padded[i, -cur_len:] = cur_new_labels
1601
+ attention_mask[i, -cur_len:] = True
1602
+ position_ids[i, -cur_len:] = torch.arange(
1603
+ 0,
1604
+ cur_len,
1605
+ dtype=position_ids.dtype,
1606
+ device=position_ids.device,
1607
+ )
1608
+ else:
1609
+ new_input_embeds_padded.append(
1610
+ torch.cat(
1611
+ (
1612
+ cur_new_embed,
1613
+ torch.zeros(
1614
+ (max_len - cur_len, cur_new_embed.shape[1]),
1615
+ dtype=cur_new_embed.dtype,
1616
+ device=cur_new_embed.device,
1617
+ ),
1618
+ ),
1619
+ dim=0,
1620
+ )
1621
+ )
1622
+ if cur_len > 0:
1623
+ new_labels_padded[i, :cur_len] = cur_new_labels
1624
+ attention_mask[i, :cur_len] = True
1625
+ position_ids[i, :cur_len] = torch.arange(
1626
+ 0,
1627
+ cur_len,
1628
+ dtype=position_ids.dtype,
1629
+ device=position_ids.device,
1630
+ )
1631
+
1632
+ new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
1633
+
1634
+ if _labels is None:
1635
+ new_labels = None
1636
+ else:
1637
+ new_labels = new_labels_padded
1638
+
1639
+ if _attention_mask is None:
1640
+ attention_mask = None
1641
+ else:
1642
+ attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
1643
+
1644
+ if _position_ids is None:
1645
+ position_ids = None
1646
+
1647
+ return (
1648
+ None,
1649
+ position_ids,
1650
+ attention_mask,
1651
+ past_key_values,
1652
+ new_input_embeds,
1653
+ new_labels,
1654
+ vision_tower_aux_feature_list_final,
1655
+ vision_tower_aux_attention_masks_list_final,
1656
+ final_size,
1657
+ global_context_feature_final,
1658
+ )
1659
+
1660
+ def initialize_vision_tokenizer(self, model_args, tokenizer):
1661
+ if model_args.mm_use_im_patch_token:
1662
+ tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
1663
+ self.resize_token_embeddings(len(tokenizer))
1664
+
1665
+ if model_args.mm_use_im_start_end:
1666
+ num_new_tokens = tokenizer.add_tokens(
1667
+ [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
1668
+ )
1669
+ self.resize_token_embeddings(len(tokenizer))
1670
+
1671
+ if num_new_tokens > 0:
1672
+ input_embeddings = self.get_input_embeddings().weight.data
1673
+ output_embeddings = self.get_output_embeddings().weight.data
1674
+
1675
+ input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
1676
+ dim=0, keepdim=True
1677
+ )
1678
+ output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
1679
+ dim=0, keepdim=True
1680
+ )
1681
+
1682
+ input_embeddings[-num_new_tokens:] = input_embeddings_avg
1683
+ output_embeddings[-num_new_tokens:] = output_embeddings_avg
1684
+
1685
+ if model_args.tune_mm_mlp_adapter:
1686
+ for p in self.get_input_embeddings().parameters():
1687
+ p.requires_grad = True
1688
+ for p in self.get_output_embeddings().parameters():
1689
+ p.requires_grad = False
1690
+
1691
+ if model_args.pretrain_mm_mlp_adapter:
1692
+ mm_projector_weights = torch.load(
1693
+ model_args.pretrain_mm_mlp_adapter, map_location="cpu"
1694
+ )
1695
+ embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
1696
+ assert num_new_tokens == 2
1697
+ if input_embeddings.shape == embed_tokens_weight.shape:
1698
+ input_embeddings[-num_new_tokens:] = embed_tokens_weight[
1699
+ -num_new_tokens:
1700
+ ]
1701
+ elif embed_tokens_weight.shape[0] == num_new_tokens:
1702
+ input_embeddings[-num_new_tokens:] = embed_tokens_weight
1703
+ else:
1704
+ raise ValueError(
1705
+ f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}."
1706
+ )
1707
+ elif model_args.mm_use_im_patch_token:
1708
+ if model_args.tune_mm_mlp_adapter:
1709
+ for p in self.get_input_embeddings().parameters():
1710
+ p.requires_grad = False
1711
+ for p in self.get_output_embeddings().parameters():
1712
+ p.requires_grad = False
multimodal_encoder_builder.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pyre-unsafe
2
+ import copy
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from transformers import AutoImageProcessor, Dinov2Config, Dinov2Model, SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel
6
+ from abc import ABC, abstractmethod
7
+ import torch.nn as nn
8
+
9
+
10
+ class ProcessorWrapper:
11
+ def __init__(
12
+ self,
13
+ transform,
14
+ height=378,
15
+ width=378,
16
+ image_mean=[0.48145466, 0.4578275, 0.40821073],
17
+ ):
18
+ self._crop_size = {
19
+ "height": height,
20
+ "width": width,
21
+ }
22
+ self._transforms = transform
23
+ # print(transform)
24
+ self.image_mean = image_mean
25
+
26
+ @property
27
+ def crop_size(self):
28
+ return self._crop_size
29
+
30
+ def preprocess(self, image, return_tensors="pt"):
31
+ # Ensure image is a PIL Image
32
+ output = {}
33
+ output["pixel_values"] = [self._transforms(image)]
34
+ return output
35
+
36
+
37
+ class BaseVisionTower(nn.Module):
38
+ def __init__(self, vision_tower_name, args, delay_load=False):
39
+ super().__init__()
40
+
41
+ self.is_loaded = False
42
+ self.args = args
43
+
44
+ self.vision_tower_name = vision_tower_name
45
+ self.select_layer = args.mm_vision_select_layer
46
+ self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
47
+ self.unfreeze_mm_vision_tower = getattr(args, "unfreeze_mm_vision_tower", False)
48
+ self.delay_load = delay_load
49
+
50
+ @abstractmethod
51
+ def load_model(self, device_map=None):
52
+ raise NotImplementedError("Subclasses must implement load_model")
53
+
54
+ @abstractmethod
55
+ def _forward(self, images):
56
+ raise NotImplementedError("Subclasses must implement forward")
57
+
58
+ def forward(self, images):
59
+ if type(images) is list:
60
+ image_features = [self._forward(image.unsqueeze(0)) for image in images]
61
+ else:
62
+ image_features = self._forward(images)
63
+
64
+ return image_features
65
+
66
+ @property
67
+ def dummy_feature(self):
68
+ return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
69
+
70
+ @property
71
+ def dtype(self):
72
+ # Dynamically infer the dtype from the first parameter, if not explicitly specified
73
+ if hasattr(self.vision_tower, "dtype"):
74
+ return self.vision_tower.dtype
75
+ else:
76
+ params = list(self.vision_tower.parameters())
77
+ return (
78
+ params[0].dtype if len(params) > 0 else torch.float32
79
+ ) # Default to torch.float32 if no parameters
80
+
81
+ @property
82
+ def device(self):
83
+ # Dynamically infer the device from the first parameter, if not explicitly specified
84
+ if hasattr(self.vision_tower, "device"):
85
+ return self.vision_tower.device
86
+ else:
87
+ params = list(self.vision_tower.parameters())
88
+ return (
89
+ params[0].device if len(params) > 0 else torch.device("cpu")
90
+ ) # Default to CPU if no parameters
91
+
92
+ @property
93
+ def config(self):
94
+ if self.is_loaded:
95
+ return self.vision_tower.config
96
+ else:
97
+ return self.cfg_only
98
+
99
+ @property
100
+ def hidden_size(self):
101
+ try:
102
+ return self.config.hidden_size
103
+ except:
104
+ return self._hidden_size
105
+
106
+ @property
107
+ def image_size(self): # resolution
108
+ # return self.config.image_size
109
+ try:
110
+ return self.config.image_size
111
+ except:
112
+ return self._image_size
113
+
114
+ @property
115
+ def patch_size(self):
116
+ # return self.config.patch_size
117
+ try:
118
+ return self.config.patch_size
119
+ except:
120
+ return self._patch_size
121
+
122
+ @property
123
+ def num_patches_per_side(self):
124
+ if self._interp_size is not None:
125
+ return int(self._interp_size**0.5)
126
+ try:
127
+ return self.image_size // self.patch_size
128
+ except:
129
+ return self._num_patches_per_side
130
+
131
+ @property
132
+ def num_patches(self):
133
+ if self._interp_size is not None:
134
+ return self._interp_size
135
+ try:
136
+ return self.num_patches_per_side**2
137
+ except:
138
+ return self._num_patches
139
+
140
+
141
+ class DinoVisionTower(BaseVisionTower):
142
+ def __init__(self, vision_tower, args, delay_load=False):
143
+ super(DinoVisionTower, self).__init__(vision_tower, args, delay_load)
144
+
145
+ model_path = "facebook/dinov2-giant"
146
+ base_model_name, res, interp = model_path, 378, 576
147
+ self._vision_tower_name = vision_tower
148
+ self.vision_tower_name = base_model_name
149
+ self._image_size = res
150
+ self._interp_size = interp
151
+ self._patch_size = 14 # default patch size
152
+
153
+ if not self.delay_load:
154
+ self.load_model()
155
+ else:
156
+ self.cfg_only = Dinov2Config.from_pretrained(self.vision_tower_name)
157
+
158
+ def load_model(self, device_map=None):
159
+
160
+ self.vision_tower = Dinov2Model.from_pretrained(self.vision_tower_name)
161
+ """ValueError: Dinov2Model does not support `device_map='auto'`. To implement support, the model class needs to implement the `_no_split_modules` attribute."""
162
+ self.vision_tower._no_split_modules = ["Dinov2SwiGLUFFN"]
163
+
164
+ _image_size = self.vision_tower.config.image_size
165
+ if self._image_size is None:
166
+ self._image_size = _image_size
167
+
168
+ # increase shortest edge to prevent edge case crops
169
+ default_shortest_ratio = 8 / 7 # 224/256
170
+ # shortest_edge = int(default_shortest_ratio * self._image_size)
171
+ shortest_edge = self._image_size
172
+
173
+ processor = AutoImageProcessor.from_pretrained(
174
+ self.vision_tower_name,
175
+ crop_size=dict(height=self._image_size, width=self._image_size),
176
+ size=dict(shortest_edge=shortest_edge),
177
+ )
178
+ self.image_processor = processor
179
+
180
+ # Assign the output channels of the projection convolution as the hidden size
181
+ self._hidden_size = (
182
+ self.vision_tower.embeddings.patch_embeddings.projection.out_channels
183
+ )
184
+ # Assign the first value of the stride of the projection convolution as the patch size
185
+ self._patch_size = (
186
+ self.vision_tower.embeddings.patch_embeddings.projection.stride[0]
187
+ )
188
+
189
+ # print(self._hidden_size, self._patch_size)
190
+
191
+ self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
192
+ self.is_loaded = True
193
+
194
+ @property
195
+ def image_size(self):
196
+ return self._image_size
197
+
198
+ def feature_select(self, outputs):
199
+ sequence_output = outputs[
200
+ "last_hidden_state"
201
+ ] # batch_size, sequence_length, hidden_size
202
+
203
+ if self.select_feature == "cls_patch":
204
+ image_features = sequence_output
205
+ elif self.select_feature == "patch":
206
+ image_features = sequence_output[:, 1:]
207
+ elif self.select_feature == "cls":
208
+ image_features = sequence_output[:, 0]
209
+ else:
210
+ raise ValueError(f"Unexpected select feature: {self.select_feature}")
211
+ return image_features
212
+
213
+ def interpolate(self, image_features):
214
+ if self._interp_size is None:
215
+ return image_features
216
+
217
+ b, num_tokens, dim = image_features.shape
218
+
219
+ if num_tokens != self.num_patches:
220
+ target_h = target_w = int(self._interp_size**0.5)
221
+ h = w = int(num_tokens**0.5)
222
+
223
+ image_features = image_features.view(b, h, w, dim)
224
+ image_features = image_features.permute(0, 3, 1, 2).contiguous()
225
+
226
+ image_features = F.interpolate(
227
+ image_features.to(torch.float32),
228
+ size=(target_h, target_w),
229
+ mode="bilinear",
230
+ align_corners=False,
231
+ ).to(image_features.dtype)
232
+
233
+ # Permute the dimensions back to (b, target_h, target_w, dim)
234
+ image_features = image_features.permute(0, 2, 3, 1).contiguous()
235
+
236
+ # Flatten the spatial dimensions (target_h, target_w) into a single dimension
237
+ image_features = image_features.flatten(1, 2)
238
+
239
+ return image_features
240
+
241
+ def _forward(self, images):
242
+ # logger.warning(f"images shape: {images.shape}")
243
+ with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
244
+ image_forward_outs = self.vision_tower.forward(
245
+ images.to(device=self.device, dtype=self.dtype)
246
+ )
247
+ # logger.warning(f"image_forward_outs shape: {image_forward_outs['last_hidden_state'].shape}")
248
+ image_features = self.feature_select(image_forward_outs).to(images.dtype)
249
+ # logger.warning(f"image_features shape: {image_features.shape}")
250
+ interp_features = self.interpolate(image_features)
251
+ # logger.warning(f"interp_features shape: {interp_features.shape}")
252
+ return interp_features
253
+
254
+ @property
255
+ def num_patches_per_side(self):
256
+ return int(self.num_patches**0.5)
257
+
258
+ @property
259
+ def num_patches(self):
260
+ if self._interp_size is None:
261
+ return (self._image_size // self._patch_size) ** 2
262
+ else:
263
+ return self._interp_size
264
+
265
+
266
+ # from .siglip_encoder import SiglipVisionTower
267
+ class SiglipVisionTower(BaseVisionTower):
268
+ def __init__(self, vision_tower_name, args, delay_load=False):
269
+ super(SiglipVisionTower, self).__init__(vision_tower_name, args, delay_load)
270
+
271
+ model_path = "google/siglip-so400m-patch14-384"
272
+ base_model_name, res, interp = model_path, 384, 576
273
+ self.vision_tower_name = base_model_name
274
+ self._image_size = res if res is not None else 512
275
+ self._interp_size = interp
276
+ if not self.delay_load:
277
+ self.load_model()
278
+ elif self.unfreeze_mm_vision_tower:
279
+ self.load_model()
280
+ else:
281
+ self._hidden_size = 1152
282
+
283
+ def load_model(self, device_map=None):
284
+ self.vision_model = "siglip"
285
+ # clip_model, processor = create_model_from_pretrained(self.vision_tower_name)
286
+ self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
287
+
288
+ # self.vision_tower = clip_model.visual.trunk
289
+ self.vision_tower.output_tokens = True
290
+
291
+ self._hidden_size = self.vision_tower.config.hidden_size
292
+ self._image_size = self.vision_tower.config.image_size
293
+ self._patch_size = self.vision_tower.config.patch_size
294
+ self.image_processor = SiglipImageProcessor.from_pretrained(
295
+ self.vision_tower_name
296
+ )
297
+
298
+ self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
299
+ self.is_loaded = True
300
+
301
+ def interpolate(self, image_features):
302
+ if self._interp_size is None:
303
+ return image_features
304
+
305
+ b, num_tokens, dim = image_features.shape
306
+
307
+ if num_tokens != self.num_patches:
308
+ target_h = target_w = int(self._interp_size**0.5)
309
+ h = w = int(num_tokens**0.5)
310
+
311
+ image_features = image_features.view(b, h, w, dim)
312
+ image_features = image_features.permute(0, 3, 1, 2).contiguous()
313
+
314
+ image_features = F.interpolate(
315
+ image_features.to(torch.float32),
316
+ size=(target_h, target_w),
317
+ mode="bilinear",
318
+ align_corners=False,
319
+ ).to(image_features.dtype)
320
+
321
+ # Permute the dimensions back to (b, target_h, target_w, dim)
322
+ image_features = image_features.permute(0, 2, 3, 1).contiguous()
323
+
324
+ # Flatten the spatial dimensions (target_h, target_w) into a single dimension
325
+ image_features = image_features.flatten(1, 2)
326
+
327
+ return image_features
328
+
329
+ def _forward(self, images, interpolate_token=576):
330
+ with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
331
+ image_features = self.vision_tower.forward(
332
+ images.to(device=self.device, dtype=self.dtype),
333
+ output_hidden_states=True,
334
+ ).hidden_states[-1]
335
+ interp_features = self.interpolate(image_features)
336
+ return interp_features
337
+
338
+
339
+ def build_vision_tower_aux_list(vision_tower_cfg, **kwargs):
340
+ vision_tower_aux_name_list = getattr(
341
+ vision_tower_cfg,
342
+ "mm_vision_tower_aux_list",
343
+ getattr(vision_tower_cfg, "vision_tower_aux_list", None),
344
+ )
345
+ vision_tower_aux_token_len_list = getattr(
346
+ vision_tower_cfg,
347
+ "mm_vision_tower_aux_token_len_list",
348
+ getattr(vision_tower_cfg, "vision_tower_aux_token_len_list", None),
349
+ )
350
+ vision_tower_aux_list = []
351
+ for vision_tower_aux_name, vision_tower_aux_token_len in zip(
352
+ vision_tower_aux_name_list, vision_tower_aux_token_len_list
353
+ ):
354
+ config = copy.deepcopy(vision_tower_cfg)
355
+ vision_tower_aux_name += "-interp{}".format(vision_tower_aux_token_len)
356
+ if "siglip" in vision_tower_aux_name.lower():
357
+ vision_tower_aux_list.append(
358
+ SiglipVisionTower(vision_tower_aux_name, args=config, **kwargs)
359
+ )
360
+
361
+ # SSL-based Vision Towers
362
+ elif "dinov2" in vision_tower_aux_name.lower():
363
+ vision_tower_aux_list.append(
364
+ DinoVisionTower(vision_tower_aux_name, args=config, **kwargs)
365
+ )
366
+ else:
367
+ raise ValueError(f"Unknown vision tower: {vision_tower_aux_name}")
368
+ return vision_tower_aux_list
multimodal_projector_builder.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pyre-unsafe
2
+ import re
3
+
4
+ import torch.nn as nn
5
+
6
+
7
+ class IdentityMap(nn.Module):
8
+ def __init__(self):
9
+ super().__init__()
10
+
11
+ def forward(self, x, *args, **kwargs):
12
+ return x
13
+
14
+ @property
15
+ def config(self):
16
+ return {"mm_projector_type": "identity"}
17
+
18
+
19
+ class SimpleResBlock(nn.Module):
20
+ def __init__(self, channels):
21
+ super().__init__()
22
+ self.pre_norm = nn.LayerNorm(channels)
23
+
24
+ self.proj = nn.Sequential(
25
+ nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels)
26
+ )
27
+
28
+ def forward(self, x):
29
+ x = self.pre_norm(x)
30
+ return x + self.proj(x)
31
+
32
+
33
+ def build_vision_projector(config, delay_load=False, **kwargs):
34
+ projector_type = getattr(config, "mm_projector_type", "linear")
35
+ config.mm_hidden_size = 256
36
+
37
+ if projector_type == "linear":
38
+ return nn.Linear(config.mm_hidden_size, config.hidden_size)
39
+
40
+ mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type)
41
+ if mlp_gelu_match:
42
+ mlp_depth = int(mlp_gelu_match.group(1))
43
+ modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
44
+ for _ in range(1, mlp_depth):
45
+ modules.append(nn.GELU())
46
+ modules.append(nn.Linear(config.hidden_size, config.hidden_size))
47
+ return nn.Sequential(*modules)
48
+
49
+ if projector_type == "identity":
50
+ return IdentityMap()
51
+
52
+ raise ValueError(f"Unknown projector type: {projector_type}")
vision_sampler.py ADDED
@@ -0,0 +1,566 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.utils.checkpoint
6
+ from torch import nn
7
+
8
+
9
+ # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
10
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
11
+ """
12
+ grid_size: int of the grid height and width
13
+ return:
14
+ pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
15
+ """
16
+ grid_h = np.arange(grid_size, dtype=np.float32)
17
+ grid_w = np.arange(grid_size, dtype=np.float32)
18
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
19
+ grid = np.stack(grid, axis=0)
20
+
21
+ grid = grid.reshape([2, 1, grid_size, grid_size])
22
+
23
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
24
+ if cls_token:
25
+ pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
26
+ return pos_embed
27
+
28
+
29
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
30
+ assert embed_dim % 2 == 0
31
+
32
+ # use half of dimensions to encode grid_h
33
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
34
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
35
+
36
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
37
+ return emb
38
+
39
+
40
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
41
+ """
42
+ embed_dim: output dimension for each position
43
+ pos: a list of positions to be encoded: size (M,)
44
+ out: (M, D)
45
+ """
46
+ assert embed_dim % 2 == 0
47
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
48
+ omega /= embed_dim / 2.0
49
+ omega = 1.0 / 10000**omega # (D/2,)
50
+
51
+ pos = pos.reshape(-1) # (M,)
52
+ out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
53
+
54
+ emb_sin = np.sin(out) # (M, D/2)
55
+ emb_cos = np.cos(out) # (M, D/2)
56
+
57
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
58
+ return emb
59
+
60
+
61
+ class CrossAttention(nn.Module):
62
+
63
+ def __init__(self, q_dim, kv_dim, hidden_dim, num_heads, attention_bias=False):
64
+ super().__init__()
65
+ self.hidden_dim = hidden_dim
66
+ self.num_heads = num_heads
67
+ self.head_dim = self.hidden_dim // self.num_heads
68
+
69
+ if (self.head_dim * self.num_heads) != self.hidden_dim:
70
+ raise ValueError(
71
+ f"hidden_dim must be divisible by num_heads (got `hidden_dim`: {self.hidden_dim}"
72
+ f" and `num_heads`: {self.num_heads})."
73
+ )
74
+
75
+ self.q_proj = nn.Sequential(
76
+ nn.LayerNorm(q_dim),
77
+ nn.Linear(q_dim, self.num_heads * self.head_dim, bias=attention_bias),
78
+ )
79
+ self.k_proj = nn.Sequential(
80
+ nn.LayerNorm(kv_dim),
81
+ nn.Linear(kv_dim, self.num_heads * self.head_dim, bias=attention_bias),
82
+ )
83
+ self.v_proj = nn.Sequential(
84
+ nn.LayerNorm(kv_dim),
85
+ nn.Linear(kv_dim, self.num_heads * self.head_dim, bias=attention_bias),
86
+ )
87
+ self.o_proj = nn.Linear(
88
+ self.num_heads * self.head_dim, q_dim, bias=attention_bias
89
+ )
90
+
91
+ def forward(self, vision_latents, queries, attention_mask):
92
+
93
+ bsz, q_len, _ = queries.size()
94
+ bsz, v_len, _ = vision_latents.size()
95
+
96
+ query_states = self.q_proj(queries)
97
+ key_states = self.k_proj(vision_latents)
98
+ value_states = self.v_proj(vision_latents)
99
+
100
+ query_states = query_states.view(
101
+ bsz, q_len, self.num_heads, self.head_dim
102
+ ).transpose(1, 2)
103
+ key_states = key_states.view(
104
+ bsz, v_len, self.num_heads, self.head_dim
105
+ ).transpose(1, 2)
106
+ value_states = value_states.view(
107
+ bsz, v_len, self.num_heads, self.head_dim
108
+ ).transpose(1, 2)
109
+
110
+ if attention_mask is not None:
111
+ if attention_mask.size() != (bsz, 1, q_len, v_len):
112
+ raise ValueError(
113
+ f"Attention mask should be of size {(bsz, 1, q_len, v_len)}, but is {attention_mask.size()}"
114
+ )
115
+
116
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
117
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
118
+ if query_states.device.type == "cuda" and attention_mask is not None:
119
+ query_states = query_states.contiguous()
120
+ key_states = key_states.contiguous()
121
+ value_states = value_states.contiguous()
122
+
123
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
124
+ query_states,
125
+ key_states,
126
+ value_states,
127
+ attn_mask=attention_mask,
128
+ )
129
+
130
+ attn_output = attn_output.transpose(1, 2).contiguous()
131
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_dim)
132
+
133
+ attn_output = self.o_proj(attn_output)
134
+
135
+ return attn_output
136
+
137
+
138
+ class AggregationBlock(nn.Module):
139
+ def __init__(
140
+ self, attention, q_dim, kv_dim, hidden_dim, num_heads, attention_bias=False
141
+ ):
142
+ super().__init__()
143
+ self.hidden_dim = hidden_dim
144
+ self.num_heads = num_heads
145
+ self.head_dim = self.hidden_dim // self.num_heads
146
+
147
+ if (self.head_dim * self.num_heads) != self.hidden_dim:
148
+ raise ValueError(
149
+ f"hidden_dim must be divisible by num_heads (got `hidden_dim`: {self.hidden_dim}"
150
+ f" and `num_heads`: {self.num_heads})."
151
+ )
152
+
153
+ self.attention = attention
154
+ if attention:
155
+ self.attention_layer = CrossAttention(
156
+ q_dim, kv_dim, hidden_dim, num_heads, attention_bias
157
+ )
158
+ else:
159
+ self.attention_layer = MLP(kv_dim, q_dim, q_dim)
160
+
161
+ def forward(self, vision_latents, queries, attention_mask):
162
+ if self.attention:
163
+ queries = self.attention_layer(vision_latents, queries, attention_mask)
164
+ else:
165
+ queries = self.attention_layer(vision_latents)
166
+
167
+ return queries
168
+
169
+
170
+ class MultiKVCrossAttention(nn.Module):
171
+
172
+ def __init__(self, q_dim, kv_dim_list, hidden_dim, num_heads, attention_bias=False):
173
+ super().__init__()
174
+
175
+ self.hidden_dim = hidden_dim
176
+ self.num_heads = num_heads
177
+ self.head_dim = self.hidden_dim // self.num_heads
178
+
179
+ if (self.head_dim * self.num_heads) != self.hidden_dim:
180
+ raise ValueError(
181
+ f"hidden_dim must be divisible by num_heads (got `hidden_dim`: {self.hidden_dim}"
182
+ f" and `num_heads`: {self.num_heads})."
183
+ )
184
+
185
+ self.q_proj = nn.Sequential(
186
+ nn.LayerNorm(q_dim),
187
+ nn.Linear(q_dim, self.num_heads * self.head_dim, bias=attention_bias),
188
+ )
189
+ self.num_of_kvs = len(kv_dim_list)
190
+ for i, kv_dim in enumerate(kv_dim_list):
191
+ setattr(
192
+ self,
193
+ "k_proj_{}".format(i),
194
+ nn.Sequential(
195
+ nn.LayerNorm(kv_dim),
196
+ nn.Linear(
197
+ kv_dim, self.num_heads * self.head_dim, bias=attention_bias
198
+ ),
199
+ ),
200
+ )
201
+ setattr(
202
+ self,
203
+ "v_proj_{}".format(i),
204
+ nn.Sequential(
205
+ nn.LayerNorm(kv_dim),
206
+ nn.Linear(
207
+ kv_dim, self.num_heads * self.head_dim, bias=attention_bias
208
+ ),
209
+ ),
210
+ )
211
+ self.o_proj = nn.Linear(
212
+ self.num_heads * self.head_dim, q_dim, bias=attention_bias
213
+ )
214
+
215
+ def forward(
216
+ self,
217
+ queries,
218
+ *vision_latents_attention_mask_list,
219
+ ):
220
+
221
+ vision_latents_list = vision_latents_attention_mask_list[: self.num_of_kvs]
222
+ attention_mask_list = vision_latents_attention_mask_list[self.num_of_kvs :]
223
+
224
+ bsz, q_len, _ = queries.size()
225
+
226
+ query_states = self.q_proj(queries)
227
+ key_states = torch.cat(
228
+ [
229
+ getattr(self, "k_proj_{}".format(i))(vision_latents_list[i])
230
+ for i in range(self.num_of_kvs)
231
+ ],
232
+ dim=1,
233
+ )
234
+ value_states = torch.cat(
235
+ [
236
+ getattr(self, "v_proj_{}".format(i))(vision_latents_list[i])
237
+ for i in range(self.num_of_kvs)
238
+ ],
239
+ dim=1,
240
+ )
241
+
242
+ v_len = key_states.shape[1]
243
+
244
+ query_states = query_states.view(
245
+ bsz, q_len, self.num_heads, self.head_dim
246
+ ).transpose(1, 2)
247
+ key_states = key_states.view(
248
+ bsz, v_len, self.num_heads, self.head_dim
249
+ ).transpose(1, 2)
250
+ value_states = value_states.view(
251
+ bsz, v_len, self.num_heads, self.head_dim
252
+ ).transpose(1, 2)
253
+
254
+ # if kv_weight is not None:
255
+ # kv_weight = kv_weight.unsqueeze(1).expand(-1, self.num_heads, -1, -1)
256
+
257
+ attention_mask = torch.cat(attention_mask_list, dim=-1)
258
+
259
+ if attention_mask is not None:
260
+ if attention_mask.size() != (bsz, 1, q_len, v_len):
261
+ raise ValueError(
262
+ f"Attention mask should be of size {(bsz, 1, q_len, v_len)}, but is {attention_mask.size()}"
263
+ )
264
+
265
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
266
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
267
+ if query_states.device.type == "cuda" and attention_mask is not None:
268
+ query_states = query_states.contiguous()
269
+ key_states = key_states.contiguous()
270
+ value_states = value_states.contiguous()
271
+
272
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
273
+ query_states,
274
+ key_states,
275
+ value_states,
276
+ attn_mask=attention_mask,
277
+ )
278
+ # attn_output = spda(
279
+ # query_states,
280
+ # key_states,
281
+ # value_states,
282
+ # attn_mask=attention_mask,
283
+ # additional_score=kv_weight
284
+ # )
285
+
286
+ attn_output = attn_output.transpose(1, 2).contiguous()
287
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_dim)
288
+
289
+ attn_output = self.o_proj(attn_output)
290
+
291
+ return attn_output
292
+
293
+
294
+ class MLP(nn.Module):
295
+ def __init__(self, d_in, d_hidden, d_out):
296
+ super().__init__()
297
+ self.linear_1 = nn.Linear(d_in, d_hidden, bias=False)
298
+ self.act = nn.GELU()
299
+ self.linear_2 = nn.Linear(d_hidden, d_out, bias=False)
300
+
301
+ def forward(self, x):
302
+ return self.linear_2(self.act(self.linear_1(x)))
303
+
304
+
305
+ class VisionCrossAttentionLayer(nn.Module):
306
+ def __init__(
307
+ self,
308
+ q_dim,
309
+ context_dim,
310
+ kv_dim_list,
311
+ kv_size_list,
312
+ hidden_dim=1024,
313
+ layer_idx=0,
314
+ ):
315
+ super().__init__()
316
+ num_heads = 16
317
+ self.num_of_kvs = len(kv_dim_list)
318
+
319
+ self.proj_context = nn.Linear(context_dim, hidden_dim, bias=False)
320
+ self.proj_in = nn.Linear(q_dim + hidden_dim, hidden_dim, bias=False)
321
+ # if self.num_of_kvs > 1:
322
+ # self.weight_mlp = MLP(q_dim+hidden_dim, hidden_dim, self.num_of_kvs)
323
+ # self.tower_weight = nn.Parameter(torch.zeros((self.num_of_kvs)))
324
+ self.proj_out = MLP(hidden_dim, hidden_dim, q_dim)
325
+
326
+ self.norm = nn.LayerNorm(hidden_dim)
327
+
328
+ self.cross_attn = MultiKVCrossAttention(
329
+ hidden_dim, kv_dim_list, hidden_dim, num_heads
330
+ )
331
+ self.kv_size_list = kv_size_list
332
+ for i, kv_size in enumerate(kv_size_list):
333
+ if kv_size > 1:
334
+ setattr(
335
+ self,
336
+ "pos_embed_{}".format(i),
337
+ nn.Parameter(torch.randn(kv_size**2, hidden_dim)),
338
+ )
339
+ # self.register_buffer("pos_embed_{}".format(i), torch.from_numpy(get_2d_sincos_pos_embed(hidden_dim, kv_size)).float(), persistent=False)
340
+
341
+ def forward(
342
+ self,
343
+ queries,
344
+ context_feature,
345
+ *vision_latents_attention_mask_list,
346
+ ) -> torch.FloatTensor:
347
+
348
+ residual = queries
349
+ # queries = self.proj_in(queries)
350
+ context_feature = self.proj_context(context_feature)
351
+ # queries = queries + context_feature
352
+ queries = torch.cat([queries, context_feature], -1)
353
+
354
+ # if self.num_of_kvs > 1:
355
+ # kv_weight = self.weight_mlp(queries) # B * 1 * num_tower
356
+ # kv_weight = kv_weight + self.tower_weight.view(1, 1, -1)
357
+ # kv_weight = kv_weight.softmax(-1)
358
+ # kv_number_list = [size**2 for size in self.kv_size_list]
359
+ # kv_weight = torch.repeat_interleave(kv_weight, torch.tensor(kv_number_list).to(kv_weight.device), dim=-1)
360
+ # else:
361
+ # kv_weight = None
362
+
363
+ queries = self.proj_in(queries)
364
+
365
+ vision_latents_list = vision_latents_attention_mask_list[: self.num_of_kvs]
366
+ attention_mask_list = vision_latents_attention_mask_list[self.num_of_kvs :]
367
+
368
+ attention_mask_list_reshaped = []
369
+ if attention_mask_list is not None:
370
+ for attention_mask in attention_mask_list:
371
+ attention_mask = attention_mask.view(attention_mask.shape[0], 1, 1, -1)
372
+ attention_mask = attention_mask.expand(-1, -1, queries.shape[1], -1)
373
+ attention_mask_list_reshaped.append(attention_mask)
374
+
375
+ vision_latents_pos_list = []
376
+ for i, vision_latents in enumerate(vision_latents_list):
377
+ if vision_latents.shape[1] > 1:
378
+ vision_latents_pos_list.append(
379
+ vision_latents
380
+ + getattr(self, "pos_embed_{}".format(i))[None, :, :].to(
381
+ vision_latents.dtype
382
+ )
383
+ )
384
+ else:
385
+ vision_latents_pos_list.append(vision_latents)
386
+
387
+ # Cross Attention
388
+ attention_output = self.cross_attn(
389
+ queries, *vision_latents_pos_list, *attention_mask_list_reshaped
390
+ )
391
+
392
+ # attention_output = (attention_output * combination_weight).sum(2)
393
+ queries = queries + attention_output
394
+
395
+ queries = self.norm(queries)
396
+
397
+ queries = self.proj_out(queries)
398
+
399
+ queries = queries + residual
400
+
401
+ return queries
402
+
403
+
404
+ class VisionAggregationLayer(nn.Module):
405
+ def __init__(
406
+ self,
407
+ q_dim,
408
+ context_dim,
409
+ kv_dim_list,
410
+ kv_size_list,
411
+ hidden_dim=1024,
412
+ layer_idx=0,
413
+ ):
414
+ super().__init__()
415
+ num_heads = 16
416
+ self.num_of_kvs = len(kv_dim_list)
417
+
418
+ self.proj_context = nn.Linear(context_dim, hidden_dim, bias=False)
419
+ self.proj_in = nn.Linear(q_dim + hidden_dim, hidden_dim, bias=False)
420
+
421
+ self.proj_out = MLP(hidden_dim, hidden_dim, q_dim)
422
+
423
+ self.norm = nn.LayerNorm(hidden_dim)
424
+
425
+ if self.num_of_kvs > 1:
426
+ self.weight_mlp = MLP(q_dim + hidden_dim, hidden_dim, self.num_of_kvs)
427
+
428
+ for i, kv_size in enumerate(kv_size_list):
429
+ if kv_size > 1:
430
+ setattr(
431
+ self,
432
+ "pos_embed_{}".format(i),
433
+ nn.Parameter(torch.randn(kv_size**2, hidden_dim)),
434
+ )
435
+ setattr(
436
+ self,
437
+ "aggregate_{}".format(i),
438
+ AggregationBlock(
439
+ True, hidden_dim, kv_dim_list[i], hidden_dim, num_heads
440
+ ),
441
+ )
442
+ else:
443
+ setattr(
444
+ self,
445
+ "aggregate_{}".format(i),
446
+ AggregationBlock(
447
+ False, hidden_dim, kv_dim_list[i], hidden_dim, num_heads
448
+ ),
449
+ )
450
+
451
+ def forward(
452
+ self,
453
+ queries,
454
+ context_feature,
455
+ *vision_latents_attention_mask_list,
456
+ ) -> torch.FloatTensor:
457
+
458
+ residual = queries
459
+ # queries = self.proj_in(queries)
460
+ context_feature = self.proj_context(context_feature)
461
+ # queries = queries + context_feature
462
+ queries = torch.cat([queries, context_feature], -1)
463
+
464
+ if self.num_of_kvs > 1:
465
+ combination_weight = self.weight_mlp(queries).softmax(
466
+ -1
467
+ ) # B * 1 * num_tower
468
+ combination_weight = combination_weight.unsqueeze(-1)
469
+ else:
470
+ combination_weight = 1
471
+
472
+ queries = self.proj_in(queries)
473
+
474
+ vision_latents_list = vision_latents_attention_mask_list[: self.num_of_kvs]
475
+ attention_mask_list = vision_latents_attention_mask_list[self.num_of_kvs :]
476
+
477
+ attention_mask_list_reshaped = []
478
+ if attention_mask_list is not None:
479
+ for attention_mask in attention_mask_list:
480
+ attention_mask = attention_mask.view(attention_mask.shape[0], 1, 1, -1)
481
+ attention_mask = attention_mask.expand(-1, -1, queries.shape[1], -1)
482
+ attention_mask_list_reshaped.append(attention_mask)
483
+
484
+ vision_latents_pos_list = []
485
+ for i, vision_latents in enumerate(vision_latents_list):
486
+ if vision_latents.shape[1] > 1:
487
+ vision_latents_pos_list.append(
488
+ vision_latents
489
+ + getattr(self, "pos_embed_{}".format(i))[None, :, :].to(
490
+ vision_latents.dtype
491
+ )
492
+ )
493
+ else:
494
+ vision_latents_pos_list.append(vision_latents)
495
+
496
+ aggregated_vision_latents_list = []
497
+ for i, (vision_latents, attention_mask) in enumerate(
498
+ zip(vision_latents_pos_list, attention_mask_list_reshaped)
499
+ ):
500
+ aggregated_vision_latents_list.append(
501
+ getattr(self, "aggregate_{}".format(i))(
502
+ vision_latents, queries, attention_mask
503
+ )
504
+ )
505
+
506
+ aggregated_vision_latents = torch.stack(aggregated_vision_latents_list, 2)
507
+
508
+ queries = queries + (aggregated_vision_latents * combination_weight).sum(2)
509
+
510
+ queries = self.norm(queries)
511
+
512
+ queries = self.proj_out(queries)
513
+
514
+ queries = queries + residual
515
+
516
+ return queries
517
+
518
+
519
+ class VisionTokenSampler(nn.Module):
520
+ def __init__(
521
+ self,
522
+ q_dim,
523
+ context_dim,
524
+ kv_dim_list,
525
+ kv_size_list,
526
+ vision_hidden_size,
527
+ num_of_layers=1,
528
+ layer_type="joint",
529
+ ):
530
+ super().__init__()
531
+ assert layer_type in ["joint", "sep"]
532
+ if layer_type == "joint":
533
+ self.layers = nn.ModuleList(
534
+ [
535
+ VisionCrossAttentionLayer(
536
+ q_dim,
537
+ context_dim,
538
+ kv_dim_list,
539
+ kv_size_list,
540
+ vision_hidden_size,
541
+ idx,
542
+ )
543
+ for idx in range(num_of_layers)
544
+ ]
545
+ )
546
+ else:
547
+ self.layers = nn.ModuleList(
548
+ [
549
+ VisionAggregationLayer(
550
+ q_dim,
551
+ context_dim,
552
+ kv_dim_list,
553
+ kv_size_list,
554
+ vision_hidden_size,
555
+ idx,
556
+ )
557
+ for idx in range(num_of_layers)
558
+ ]
559
+ )
560
+
561
+ def forward(self, queries, context_feature, *vision_latents_attention_mask_list):
562
+ for layer in self.layers:
563
+ queries = layer(
564
+ queries, context_feature, *vision_latents_attention_mask_list
565
+ )
566
+ return queries