Edit model card

Vistral_Function_Calling_500

This model is a fine-tuned version of Viet-Mistral/Vistral-7B-Chat on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2455
  • Rouge1: 0.8798
  • Rouge2: 0.7704
  • Rougel: 0.8144
  • Rougelsum: 0.873
  • Gen Len: 2048.0

It achieves the following results on the test set:

  • Loss: 0.2639
  • Rouge1: 0.8874
  • Rouge2: 0.7745
  • Rougel: 0.8141
  • Rougelsum: 0.8811
  • Gen Len: 2048.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 3
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 6
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.8125 0.25 3 0.8199 0.8499 0.7054 0.7623 0.8429 2048.0
0.658 0.5 6 0.3952 0.8634 0.7361 0.7854 0.8564 2048.0
0.4082 0.75 9 0.3261 0.8732 0.7452 0.7927 0.8657 2048.0
0.3302 1.0 12 0.2928 0.8733 0.7552 0.801 0.8666 2048.0
0.2653 1.25 15 0.2653 0.8775 0.7646 0.809 0.8703 2048.0
0.2605 1.5 18 0.2528 0.8778 0.7678 0.8119 0.8707 2048.0
0.2444 1.75 21 0.2476 0.8793 0.7697 0.8132 0.872 2048.0
0.23 2.0 24 0.2455 0.8798 0.7704 0.8144 0.873 2048.0

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Virros/Vistral_Function_Calling_500

Adapter
(44)
this model