File size: 1,408 Bytes
40e7426 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
language: "en"
tags:
- paraphrase-generation
- text-generation
- Conditional Generation
inference: false
---
β
# Paraphrase-Generation
β
## Model description
β
T5 Model for generating paraphrases of english sentences. Trained on the [Google PAWS](https://github.com/google-research-datasets/paws) dataset.
β
## How to use
β
PyTorch and TF models available
β
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
β
tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")
model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws")
β
sentence = "This is something which i cannot understand at all"
text = "paraphrase: " + sentence + " </s>"
encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=256,
do_sample=True,
top_k=120,
top_p=0.95,
early_stopping=True,
num_return_sequences=5
)
for output in outputs:
line = tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True)
print(line)
β
```
For more reference on training your own T5 model or using this model, do check out [Paraphrase Generation](https://github.com/Vamsi995/Paraphrase-Generator).
|