BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from intfloat/e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/e5-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ValentinaKim/bge-base-automobile-matryoshka")
# Run inference
sentences = [
    "클러스터 조명 밝기 조절은 시동 'ON' 상태에서 인포테인먼트 시스템의 설정> 클러스터/HUD > 화면 밝기를 차례로 선택하면 클러스터의 밝기를 조절할 수 있습니다. 인포테인먼트 시스템 화면에 표시되는 조명밝기 조절 정도를 참고하여 원하는 밝기로 조절하십시오.",
    '클러스터 조명 밝기 조절은 어떻게 하나요?',
    '하이브리드 자동차의 저압 타이어 경고등이 켜졌을 때의 조치는 무엇입니까?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.5556
cosine_accuracy@3 0.8148
cosine_accuracy@5 0.8519
cosine_accuracy@10 0.9259
cosine_precision@1 0.5556
cosine_precision@3 0.2716
cosine_precision@5 0.1704
cosine_precision@10 0.0926
cosine_recall@1 0.5556
cosine_recall@3 0.8148
cosine_recall@5 0.8519
cosine_recall@10 0.9259
cosine_ndcg@10 0.7436
cosine_mrr@10 0.6849
cosine_map@100 0.689

Information Retrieval

Metric Value
cosine_accuracy@1 0.5556
cosine_accuracy@3 0.7778
cosine_accuracy@5 0.8519
cosine_accuracy@10 0.8889
cosine_precision@1 0.5556
cosine_precision@3 0.2593
cosine_precision@5 0.1704
cosine_precision@10 0.0889
cosine_recall@1 0.5556
cosine_recall@3 0.7778
cosine_recall@5 0.8519
cosine_recall@10 0.8889
cosine_ndcg@10 0.7335
cosine_mrr@10 0.6825
cosine_map@100 0.6897

Information Retrieval

Metric Value
cosine_accuracy@1 0.5926
cosine_accuracy@3 0.7778
cosine_accuracy@5 0.8148
cosine_accuracy@10 0.8889
cosine_precision@1 0.5926
cosine_precision@3 0.2593
cosine_precision@5 0.163
cosine_precision@10 0.0889
cosine_recall@1 0.5926
cosine_recall@3 0.7778
cosine_recall@5 0.8148
cosine_recall@10 0.8889
cosine_ndcg@10 0.7461
cosine_mrr@10 0.6997
cosine_map@100 0.7074

Information Retrieval

Metric Value
cosine_accuracy@1 0.5926
cosine_accuracy@3 0.7407
cosine_accuracy@5 0.8519
cosine_accuracy@10 0.8889
cosine_precision@1 0.5926
cosine_precision@3 0.2469
cosine_precision@5 0.1704
cosine_precision@10 0.0889
cosine_recall@1 0.5926
cosine_recall@3 0.7407
cosine_recall@5 0.8519
cosine_recall@10 0.8889
cosine_ndcg@10 0.7391
cosine_mrr@10 0.691
cosine_map@100 0.6993

Information Retrieval

Metric Value
cosine_accuracy@1 0.5926
cosine_accuracy@3 0.7407
cosine_accuracy@5 0.8519
cosine_accuracy@10 0.9259
cosine_precision@1 0.5926
cosine_precision@3 0.2469
cosine_precision@5 0.1704
cosine_precision@10 0.0926
cosine_recall@1 0.5926
cosine_recall@3 0.7407
cosine_recall@5 0.8519
cosine_recall@10 0.9259
cosine_ndcg@10 0.7456
cosine_mrr@10 0.6892
cosine_map@100 0.6933

Training Details

Training Dataset

Unnamed Dataset

  • Size: 63 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 89 tokens
    • mean: 181.76 tokens
    • max: 365 tokens
    • min: 22 tokens
    • mean: 46.21 tokens
    • max: 72 tokens
  • Samples:
    positive anchor
    하이브리드 자동차의 전방 차량 출발 알림 기능의 제한 사항은 과격하게 운전할 경우, 빈번하게 차선을 침범할 경우, 차로 이탈방지 보조 등 다른 운전자 보조에 의해 차량이 제어될 경우 등입니다. 하이브리드 자동차의 전방 차량 출발 알림 기능의 제한 사항은 무엇입니까?
    파워 트렁크가 정상적으로 작동하지 않으면 무리한 힘을 가하지 마십시오. 파워 트렁크가 손상될 수 있습니다. 반드시 당사 직영 하이테크센터나 블루핸즈에서 점검을 받으십시오. 파워 트렁크가 정상적으로 작동하지 않으면 어떻게 해야 하나요?
    에어백 경고 라벨의 주의 사항은 13세 미만의 어린이는 에어백의 팽창 충격으로 다칠 수 있습니다. 어린이에게는 뒷좌석이 안전할 수 있습니다. 유아용 보조 좌석은 동승석에 설치하지 마십시오. 에어백에서 가능한 떨어져 앉으십시오. 좌석 안전벨트와 어린이 보호 장치를 사용하십시오. 에어백 경고 라벨의 주의 사항은 무엇입니까?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • gradient_accumulation_steps: 64
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 64
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
1.0 1 0.4923 0.5456 0.5549 0.4722 0.5450
2.0 2 0.6184 0.6751 0.7085 0.6313 0.7072
3.0 3 0.6810 0.6825 0.6916 0.6933 0.6840
4.0 4 0.6993 0.7074 0.6897 0.6933 0.689
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
7
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ValentinaKim/bge-base-automobile-matryoshka

Base model

intfloat/e5-base
Finetuned
(2)
this model

Evaluation results