BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from intfloat/e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/e5-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ValentinaKim/bge-base-automobile-matryoshka")
# Run inference
sentences = [
"클러스터 조명 밝기 조절은 시동 'ON' 상태에서 인포테인먼트 시스템의 설정> 클러스터/HUD > 화면 밝기를 차례로 선택하면 클러스터의 밝기를 조절할 수 있습니다. 인포테인먼트 시스템 화면에 표시되는 조명밝기 조절 정도를 참고하여 원하는 밝기로 조절하십시오.",
'클러스터 조명 밝기 조절은 어떻게 하나요?',
'하이브리드 자동차의 저압 타이어 경고등이 켜졌을 때의 조치는 무엇입니까?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5556 |
cosine_accuracy@3 | 0.8148 |
cosine_accuracy@5 | 0.8519 |
cosine_accuracy@10 | 0.9259 |
cosine_precision@1 | 0.5556 |
cosine_precision@3 | 0.2716 |
cosine_precision@5 | 0.1704 |
cosine_precision@10 | 0.0926 |
cosine_recall@1 | 0.5556 |
cosine_recall@3 | 0.8148 |
cosine_recall@5 | 0.8519 |
cosine_recall@10 | 0.9259 |
cosine_ndcg@10 | 0.7436 |
cosine_mrr@10 | 0.6849 |
cosine_map@100 | 0.689 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5556 |
cosine_accuracy@3 | 0.7778 |
cosine_accuracy@5 | 0.8519 |
cosine_accuracy@10 | 0.8889 |
cosine_precision@1 | 0.5556 |
cosine_precision@3 | 0.2593 |
cosine_precision@5 | 0.1704 |
cosine_precision@10 | 0.0889 |
cosine_recall@1 | 0.5556 |
cosine_recall@3 | 0.7778 |
cosine_recall@5 | 0.8519 |
cosine_recall@10 | 0.8889 |
cosine_ndcg@10 | 0.7335 |
cosine_mrr@10 | 0.6825 |
cosine_map@100 | 0.6897 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5926 |
cosine_accuracy@3 | 0.7778 |
cosine_accuracy@5 | 0.8148 |
cosine_accuracy@10 | 0.8889 |
cosine_precision@1 | 0.5926 |
cosine_precision@3 | 0.2593 |
cosine_precision@5 | 0.163 |
cosine_precision@10 | 0.0889 |
cosine_recall@1 | 0.5926 |
cosine_recall@3 | 0.7778 |
cosine_recall@5 | 0.8148 |
cosine_recall@10 | 0.8889 |
cosine_ndcg@10 | 0.7461 |
cosine_mrr@10 | 0.6997 |
cosine_map@100 | 0.7074 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5926 |
cosine_accuracy@3 | 0.7407 |
cosine_accuracy@5 | 0.8519 |
cosine_accuracy@10 | 0.8889 |
cosine_precision@1 | 0.5926 |
cosine_precision@3 | 0.2469 |
cosine_precision@5 | 0.1704 |
cosine_precision@10 | 0.0889 |
cosine_recall@1 | 0.5926 |
cosine_recall@3 | 0.7407 |
cosine_recall@5 | 0.8519 |
cosine_recall@10 | 0.8889 |
cosine_ndcg@10 | 0.7391 |
cosine_mrr@10 | 0.691 |
cosine_map@100 | 0.6993 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5926 |
cosine_accuracy@3 | 0.7407 |
cosine_accuracy@5 | 0.8519 |
cosine_accuracy@10 | 0.9259 |
cosine_precision@1 | 0.5926 |
cosine_precision@3 | 0.2469 |
cosine_precision@5 | 0.1704 |
cosine_precision@10 | 0.0926 |
cosine_recall@1 | 0.5926 |
cosine_recall@3 | 0.7407 |
cosine_recall@5 | 0.8519 |
cosine_recall@10 | 0.9259 |
cosine_ndcg@10 | 0.7456 |
cosine_mrr@10 | 0.6892 |
cosine_map@100 | 0.6933 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 63 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 89 tokens
- mean: 181.76 tokens
- max: 365 tokens
- min: 22 tokens
- mean: 46.21 tokens
- max: 72 tokens
- Samples:
positive anchor 하이브리드 자동차의 전방 차량 출발 알림 기능의 제한 사항은 과격하게 운전할 경우, 빈번하게 차선을 침범할 경우, 차로 이탈방지 보조 등 다른 운전자 보조에 의해 차량이 제어될 경우 등입니다.
하이브리드 자동차의 전방 차량 출발 알림 기능의 제한 사항은 무엇입니까?
파워 트렁크가 정상적으로 작동하지 않으면 무리한 힘을 가하지 마십시오. 파워 트렁크가 손상될 수 있습니다. 반드시 당사 직영 하이테크센터나 블루핸즈에서 점검을 받으십시오.
파워 트렁크가 정상적으로 작동하지 않으면 어떻게 해야 하나요?
에어백 경고 라벨의 주의 사항은 13세 미만의 어린이는 에어백의 팽창 충격으로 다칠 수 있습니다. 어린이에게는 뒷좌석이 안전할 수 있습니다. 유아용 보조 좌석은 동승석에 설치하지 마십시오. 에어백에서 가능한 떨어져 앉으십시오. 좌석 안전벨트와 어린이 보호 장치를 사용하십시오.
에어백 경고 라벨의 주의 사항은 무엇입니까?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochgradient_accumulation_steps
: 64learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1tf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 64eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|
1.0 | 1 | 0.4923 | 0.5456 | 0.5549 | 0.4722 | 0.5450 |
2.0 | 2 | 0.6184 | 0.6751 | 0.7085 | 0.6313 | 0.7072 |
3.0 | 3 | 0.6810 | 0.6825 | 0.6916 | 0.6933 | 0.6840 |
4.0 | 4 | 0.6993 | 0.7074 | 0.6897 | 0.6933 | 0.689 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.33.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ValentinaKim/bge-base-automobile-matryoshka
Base model
intfloat/e5-baseEvaluation results
- Cosine Accuracy@1 on dim 768self-reported0.556
- Cosine Accuracy@3 on dim 768self-reported0.815
- Cosine Accuracy@5 on dim 768self-reported0.852
- Cosine Accuracy@10 on dim 768self-reported0.926
- Cosine Precision@1 on dim 768self-reported0.556
- Cosine Precision@3 on dim 768self-reported0.272
- Cosine Precision@5 on dim 768self-reported0.170
- Cosine Precision@10 on dim 768self-reported0.093
- Cosine Recall@1 on dim 768self-reported0.556
- Cosine Recall@3 on dim 768self-reported0.815