Re:MythoMax-PIPPA (ReMM-PIPPA) is a recreation trial of the original MythoMax-L2-B13 with updated models and merge of the PIPPA dataset (PIPPA-ShareGPT-Subset-QLora-13b) at (0.18) weight.
Command useds and explaination :
Due to hardware limitation, some merge was done in 2 part.
- Recreate ReML : Mythologic (v2) (Chronos/Hermes/Airboros)
=> Replacing Chronos by The-Face-Of-Goonery/Chronos-Beluga-v2-13bfp16 (0.30)
=> Replacing Airoboros by jondurbin/airoboros-l2-13b-2.1 (last version) (0.40)
=> Keeping NousResearch/Nous-Hermes-Llama2-13b (0.30)
Part 1: python ties_merge.py TheBloke/Llama-2-13B-fp16 ./ReML-L2-13B-part1 --merge The-Face-Of-Goonery/Chronos-Beluga-v2-13bfp16 --density 0.42 --merge jondurbin/airoboros-l2-13b-2.1 --density 0.56 --cuda
Part 2: python ties_merge.py TheBloke/Llama-2-13B-fp16 ./ReML-L2-13B --merge NousResearch/Nous-Hermes-Llama2-13b --density 0.30 --merge Undi95/ReML-L2-13B-part1 --density 0.70 --cuda
With that :
- Recreate ReMM : MythoMax (v2) (Mythologic/Huginn v1)
=> Replacing Mythologic by the one above (0.5)
=> Replacing Huginn by The-Face-Of-Goonery/Huginn-13b-v1.2 (hottest) (0.5)
Part 3: python ties_merge.py TheBloke/Llama-2-13B-fp16 ./ReMM-L2-13B --merge Undi95/ReML-L2-13B --density 0.50 --merge The-Face-Of-Goonery/Huginn-13b-v1.2 --density 0.50 --cuda
Part 4: Undi95/ReMM-L2-13B (0.82) + zarakiquemparte/PIPPA-ShareGPT-Subset-QLora-13b (0.18) = ReMM-L2-13B-PIPPA
Description
This repo contains fp16 files of ReMM-PIPPA, a recreation of the original MythoMax, but updated and merged with the PIPPA dataset.
Models used
- TheBloke/Llama-2-13B-fp16 (base)
- The-Face-Of-Goonery/Chronos-Beluga-v2-13bfp16
- jondurbin/airoboros-l2-13b-2.1
- NousResearch/Nous-Hermes-Llama2-13b
- The-Face-Of-Goonery/Huginn-13b-v1.2
- ReML-L2-13B (Private recreation trial of an updated Mythologic-L2-13B)
Loras used
- zarakiquemparte/PIPPA-ShareGPT-Subset-QLora-13b
Prompt template: Alpaca
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{prompt}
### Response:
Special thanks to Sushi kek
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 52.58 |
ARC (25-shot) | 59.73 |
HellaSwag (10-shot) | 83.12 |
MMLU (5-shot) | 54.1 |
TruthfulQA (0-shot) | 49.94 |
Winogrande (5-shot) | 74.51 |
GSM8K (5-shot) | 2.96 |
DROP (3-shot) | 43.69 |
- Downloads last month
- 873
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support