File size: 3,597 Bytes
62315fe 540974e 3366929 b7c8b6e 3366929 b7c8b6e 62315fe 540974e 62315fe d7f3593 540974e d7f3593 e299fff 540974e e299fff 62315fe 540974e 62315fe 540974e 62315fe 540974e 62315fe 540974e e299fff 40ceb07 e299fff 6ce9401 e299fff 6ce9401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
language:
- en
tags:
- KALE-LM
- science
- chemistry
pipeline_tag: text-generation
---
# Llama3-KALE-LM-Chem-8B
## Introduction
We are thrilled to present Llama3-KALE-LM-Chem 8B, our first open-source KALE-LM, which specializes in chemistry.
## Training Details
We have continually pre-trained the model with a large amount of data and post-trained it through supervised fine-tuning.
## Benchmarks
### Open Benchmarks
| Models | ChemBench | MMLU | MMLU-Chem | SciQ | IE(Acc) | IE(LS) |
| ---- | ---- | ---- | ---- | ---- | ---- | ---- |
| GPT-3.5 | 47.15 | 69.75 | 53.32 | 89.6 | 52.98 | 68.28 |
| GPT-4 | 53.72 | 78.67 | 63.70 | 94.10 | 54.20 | 69.74 |
| Llama3-8B-Instruct | 46.02 | 68.3 | 51.10 | 93.30 | 45.83 | 61.22 |
| LlaSMol | 28.47 | 54.47 | 33.24 | 72.30 | 2.16 | 3.23 |
| ChemDFM | 44.44 | 58.11 | 45.60 | 86.70 | 7.61 | 11.49 |
| ChemLLM-7B-Chat | 34.16 | 61.79 | 48.39 | 94.00 | 29.66 | 39.17 |
| ChemLLM-7B-Chat-1.5-SFT | 42.75 | 63.56 | 49.63 | **95.10** | 14.96 | 19.61 |
| **Llama3-KALE-LM-Chem-8B** | **52.40** | **68.74** | **53.83** | 91.50 | **67.50** | **78.37** |
#### ChemBench Details (Evaluated By OpenCompass)
| Models | NC | PP | M2C | C2M | PP | RS | YP | TP | SP | Average |
| ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ |
| GPT-3.5 | 46.93 | 56.98 | 85.28 | 38.25 | 43.67 | 42.33 | 30.33 | 42.57 | 38 | 47.15 |
| GPT-4 | 54.82 | 65.02 | 92.64 | 52.88 | 62.67 | 52.67 | 42.33 | 24.75 | 35.67 | 53.72 |
| Llama3-8B-Instruct | 51.31 | 27.79 | 90.30 | 40.88 | 34.00 | 30.00 | 45.33 | 60.89 | 33.67 | 46.02 |
| LlaSMol | 27.78 | 29.34 | 31.44 | 23.38 | 25.67 | 24.00 | 37.33 | 34.65 | 22.67 | 28.47 |
| ChemDFM | 36.92 | 55.57 | 83.95 | 42.00 | 40.00 | 37.33 | 39.00 | 33.17 | 32.00 | 44.44 |
| ChemLLM-7B-Chat | 41.05 | 29.76 | 85.28 | 26.12 | 26.00 | 24.00 | 20.00 | 24.26 | 31.00 | 34.16 |
| ChemLLM-7B-Chat-1.5-SFT | 50.06 | 49.51 | 85.28 | 38.75 | 38.00 | 26.67 | 28.33 | 31.68 | 33.67 | 42.44 |
| Llama3-KALE-LM-Chem-8B | 63.58 | 58.39 | 92.98 | 44.50 | 48.67 | 38.33 | 46.33 | 44.55 | 34.33 | 52.41 |
## Quick Start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"USTC-KnowledgeComputingLab/Llama3-KALE-LM-Chem-8B",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("USTC-KnowledgeComputingLab/Llama3-KALE-LM-Chem-8B")
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=2048
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Cite This Work
```
@article{dai2024kale,
title={KALE-LM: Unleash The Power Of AI For Science Via Knowledge And Logic Enhanced Large Model},
author={Dai, Weichen and Chen, Yezeng and Dai, Zijie and Huang, Zhijie and Liu, Yubo and Pan, Yixuan and Song, Baiyang and Zhong, Chengli and Li, Xinhe and Wang, Zeyu and others},
journal={arXiv preprint arXiv:2409.18695},
year={2024}
}
``` |