cyzhh commited on
Commit
e299fff
1 Parent(s): d7f3593

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -0
README.md CHANGED
@@ -8,6 +8,10 @@ base_model: meta-llama/Meta-Llama-3-8B-Instruct
8
 
9
  We are thrilled to present Llama3-KALE-LM-Chem 8B, the newest version of our Llama3-KALE-LM-Chem model, which embodies nearly half a year of innovation.
10
 
 
 
 
 
11
  ## Benchmarks
12
 
13
  ### Open Benchmarks
@@ -36,3 +40,43 @@ We are thrilled to present Llama3-KALE-LM-Chem 8B, the newest version of our Lla
36
  | ChemLLM-7B-Chat-1.5-SFT | 50.06 | 49.51 | 85.28 | 38.75 | 38.00 | 26.67 | 28.33 | 31.68 | 33.67 | 42.44 |
37
  | OURMODEL | 63.58 | 58.39 | 92.98 | 44.50 | 48.67 | 38.33 | 46.33 | 44.55 | 34.33 | 52.41 |
38
  | OURMODELINSTRUCT | 61.33 | 43.44 | 90.30 | 53.62 | 72.67 | 53.67 | 46.00 | 47.03 | 45.00 | 57.01 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  We are thrilled to present Llama3-KALE-LM-Chem 8B, the newest version of our Llama3-KALE-LM-Chem model, which embodies nearly half a year of innovation.
10
 
11
+ ## Training Details
12
+
13
+ We have continue pre-trained the model with a large amount of data and post-trained it using supervised fine-tuning.
14
+
15
  ## Benchmarks
16
 
17
  ### Open Benchmarks
 
40
  | ChemLLM-7B-Chat-1.5-SFT | 50.06 | 49.51 | 85.28 | 38.75 | 38.00 | 26.67 | 28.33 | 31.68 | 33.67 | 42.44 |
41
  | OURMODEL | 63.58 | 58.39 | 92.98 | 44.50 | 48.67 | 38.33 | 46.33 | 44.55 | 34.33 | 52.41 |
42
  | OURMODELINSTRUCT | 61.33 | 43.44 | 90.30 | 53.62 | 72.67 | 53.67 | 46.00 | 47.03 | 45.00 | 57.01 |
43
+
44
+ ## Quick Start
45
+
46
+ ```python
47
+ from transformers import AutoModelForCausalLM, AutoTokenizer
48
+ device = "cuda" # the device to load the model onto
49
+
50
+ model = AutoModelForCausalLM.from_pretrained(
51
+ "USTC-KnowledgeComputingLab/Llama3-KALE-LM-Chem-8B",
52
+ torch_dtype="auto",
53
+ device_map="auto"
54
+ )
55
+ tokenizer = AutoTokenizer.from_pretrained("USTC-KnowledgeComputingLab/Llama3-KALE-LM-Chem-8B")
56
+
57
+ prompt = "Give me a short introduction to large language model."
58
+ messages = [
59
+ {"role": "system", "content": "You are a helpful assistant."},
60
+ {"role": "user", "content": prompt}
61
+ ]
62
+ text = tokenizer.apply_chat_template(
63
+ messages,
64
+ tokenize=False,
65
+ add_generation_prompt=True
66
+ )
67
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
68
+
69
+ generated_ids = model.generate(
70
+ model_inputs.input_ids,
71
+ max_new_tokens=2048
72
+ )
73
+ generated_ids = [
74
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
75
+ ]
76
+
77
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
78
+ ```
79
+
80
+ ## Citation
81
+
82
+ Will Coming soon....