SentenceTransformer based on sentence-transformers/multi-qa-MiniLM-L6-dot-v1
This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-MiniLM-L6-dot-v1. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Dot Product
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Trelis/multi-qa-MiniLM-L6-dot-v1-ft-pairs-4-cst-epoch-s1-overlap")
# Run inference
sentences = [
'What happens if a team is leading at the end of the two-minute period of extra time?',
'24. 1. 2 the drop - off commences with a tap from the centre of the halfway line by the team that did not commence the match with possession. 24. 1. 3 the drop - off will commence with a two ( 2 ) minute period of extra time. 24. 1. 4 should a team be leading at the expiration of the two ( 2 ) minute period of extra time then that team will be declared the winner and match complete. 24. 1. 5 should neither team be leading at the expiration of two ( 2 ) minutes, a signal is given and the match will pause at the next touch or dead ball. each team will then remove another player from the field of play. 24. 1. 6 the match will recommence immediately after the players have left the field at the same place where it paused ( i. e. the team retains possession at the designated number of touches, or at change of possession due to some infringement or the sixth touch ) and the match will continue until a try is scored. 24. 1. 7 there is no time off during the drop - off and the clock does not stop at the two ( 2 ) minute interval.',
'7. 7 the tap to commence or recommence play must be performed without delay. ruling = a penalty to the non - offending team at the centre of the halfway line. 8 match duration 8. 1 a match is 40 minutes in duration, consisting of two ( 2 ) x 20 minute halves with a half time break. 8. 1. 1 there is no time off for injury during a match. 8. 2 local competition and tournament conditions may vary the duration of a match. 8. 3 when time expires, play is to continue until the next touch or dead ball and end of play is signaled by the referee. 8. 3. 1 should a penalty be awarded during this period, the penalty is to be taken. 8. 4 if a match is abandoned in any circumstances other than those referred to in clause 24. 1. 6 the nta or nta competition provider in its sole discretion shall determine the result of the match. 9 possession 9. 1 the team with the ball is entitled to six ( 6 ) touches prior to a change of possession. 9. 2 on the change of possession due to an intercept, the first touch will be zero ( 0 ) touch.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: constantwarmup_ratio
: 0.3
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: constantlr_scheduler_kwargs
: {}warmup_ratio
: 0.3warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.2857 | 2 | 1.7892 | - |
0.5714 | 4 | 1.5998 | 1.3002 |
0.8571 | 6 | 1.5637 | - |
1.1429 | 8 | 1.3347 | 1.1748 |
1.4286 | 10 | 1.4256 | - |
1.7143 | 12 | 1.2205 | 1.1085 |
2.0 | 14 | 1.1307 | - |
2.2857 | 16 | 1.119 | 1.0558 |
2.5714 | 18 | 1.2639 | - |
2.8571 | 20 | 1.2834 | 1.0108 |
3.1429 | 22 | 0.9248 | - |
3.4286 | 24 | 1.1527 | 1.0074 |
3.7143 | 26 | 0.8702 | - |
4.0 | 28 | 0.725 | 1.0124 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.1.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.17.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.