Model Card for Model ID
Welcome to StableMed , it's a stable 3b llm - alpha fine tuned model for Medical Question and Answering.
Model Details
Model Description
This is a stable 3b finetune for medical QnA using MedQuad. It's intended for education in public health and sanitation, specifically to improve our understanding of outreach and communication.
- Developed by: Tonic
- Shared by [optional]: Tonic
- Model type: stable LM 3b - Alpha
- Language(s) (NLP): English
- License: MIT
- Finetuned from model [optional]: stabilityai/stablelm-3b-4e1t
Model Sources [optional]
- Repository: Tonic/stablemed
- Demo : Tonic/StableMed_Chat
Uses
Use this model for educational purposes only , do not use for decision support in the wild.
Use this model for Medical Q n A.
Use this model as a educational tool for "miniature" models.
Direct Use
Medical Question and Answering
Downstream Use [optional]
Finetune this model to work in a network or swarm of medical finetunes.
Out-of-Scope Use
do not use this model in the wild.
do not use this model directly.
do not use this model for real world decision support.
Bias, Risks, and Limitations
[We use Giskard for evaluation - Coming Soon!]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
DO NOT USE THIS MODEL WITHOUT EVALUATION
DO NOT USE THIS MODEL WITHOUT BENCHMARKING
DO NOT USE THIS MODEL WITHOUT FURTHER FINETUNING
How to Get Started with the Model
Use the code below to get started with the model.
from transformers import AutoTokenizer, MistralForCausalLM
import torch
import gradio as gr
import random
from textwrap import wrap
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
from peft import PeftModel, PeftConfig
import torch
import gradio as gr
import os
hf_token = os.environ.get('HUGGINGFACE_TOKEN')
# Functions to Wrap the Prompt Correctly
def wrap_text(text, width=90):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
# Combine user input and system prompt
formatted_input = f"[INSTRUCTION]{system_prompt}[QUESTION]{user_input}"
# Encode the input text
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
model_inputs = encodeds.to(device)
# Generate a response using the model
output = model.generate(
**model_inputs,
max_length=max_length,
use_cache=True,
early_stopping=True,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.eos_token_id,
temperature=0.1,
do_sample=True
)
# Decode the response
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
return response_text
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use the base model's ID
base_model_id = "stabilityai/stablelm-3b-4e1t"
model_directory = "Tonic/stablemed"
# Instantiate the Tokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", trust_remote_code=True, padding_side="left")
# tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
# Load the PEFT model
peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token)
peft_model = MistralForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", trust_remote_code=True)
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token)
class ChatBot:
def __init__(self):
self.history = []
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
# Combine user input and system prompt
formatted_input = f"[INSTRUCTION:]{system_prompt}[QUESTION:] {user_input}"
# Encode user input
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
# Concatenate the user input with chat history
if len(self.history) > 0:
chat_history_ids = torch.cat([self.history, user_input_ids], dim=-1)
else:
chat_history_ids = user_input_ids
# Generate a response using the PEFT model
response = peft_model.generate(input_ids=chat_history_ids, max_length=400, pad_token_id=tokenizer.eos_token_id)
# Update chat history
self.history = chat_history_ids
# Decode and return the response
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
return response_text
bot = ChatBot()
title = "👋🏻Welcome to Tonic's StableMed Chat🚀"
description = """
You can use this Space to test out the current model [StableMed](https://huggingface.co/Tonic/stablemed) or You can also use 😷StableMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/StableMed_Chat?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
# Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
"""
examples = [["What is the proper treatment for buccal herpes?", "Please provide information on the most effective antiviral medications and home remedies for treating buccal herpes."]]
iface = gr.Interface(
fn=bot.predict,
title=title,
description=description,
examples=examples,
inputs=["text", "text"], # Take user input and system prompt separately
outputs="text",
theme="ParityError/Anime"
)
iface.launch()
Training Details
Training Data
output
Dataset({
features: ['qtype', 'Question', 'Answer'],
num_rows: 16407
})
Training Procedure
trainable params: 12940288 || all params: 1539606528 || trainable%: 0.8404931886596937
Using Lora
Preprocessing [optional]
Original Model Configuration:
StableLMEpochForCausalLM(
(model): StableLMEpochModel(
(embed_tokens): Embedding(50304, 2560)
(layers): ModuleList(
(0-31): 32 x DecoderLayer(
(self_attn): Attention(
(q_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
(k_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
(v_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
(o_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
(rotary_emb): RotaryEmbedding()
)
(mlp): MLP(
(gate_proj): Linear4bit(in_features=2560, out_features=6912, bias=False)
(up_proj): Linear4bit(in_features=2560, out_features=6912, bias=False)
(down_proj): Linear4bit(in_features=6912, out_features=2560, bias=False)
(act_fn): SiLU()
)
(input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
(post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
)
)
(norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
)
(lm_head): Linear(in_features=2560, out_features=50304, bias=False)
)
Data Formatting :
Given a target sentence construct the underlying meaning representation of the input sentence as a single function with attributes and attribute values.
This function should describe the target string accurately and the function must be one of the following ['inform', 'request', 'give_opinion', 'confirm', 'verify_attribute', 'suggest', 'request_explanation', 'recommend', 'request_attribute'].
The attributes must be one of the following: ['name', 'pathology', 'therapeutic', 'dosage', 'side_effects', 'contraindications', 'manufacturer', 'price', 'availability', 'administration', 'warnings', 'interactions', 'storage', 'expiration_date', 'formulation', 'strength', 'route_of_administration', 'class', 'prescription_required', 'generic_name', 'brand_name', 'patient_instructions']
Training Hyperparameters
- Training regime:
Speeds, Sizes, Times [optional]
TrainOutput(global_step=2051, training_loss=0.6156479549198718, metrics={'train_runtime': 22971.4974, 'train_samples_per_second': 0.357, 'train_steps_per_second': 0.089, 'total_flos': 6.5950444363776e+16, 'train_loss': 0.6156479549198718, 'epoch': 0.5})
Results
Value | Measurement |
---|---|
50 | 1.427000 |
100 | 0.763200 |
150 | 0.708200 |
200 | 0.662300 |
250 | 0.650900 |
300 | 0.617400 |
350 | 0.602900 |
400 | 0.608900 |
450 | 0.596100 |
500 | 0.602000 |
550 | 0.594700 |
600 | 0.584700 |
650 | 0.611000 |
700 | 0.558700 |
750 | 0.616300 |
800 | 0.568700 |
850 | 0.597300 |
900 | 0.607400 |
950 | 0.563200 |
1000 | 0.602900 |
1050 | 0.594900 |
1100 | 0.583000 |
1150 | 0.604500 |
1200 | 0.547400 |
1250 | 0.586600 |
1300 | 0.554300 |
1350 | 0.581000 |
1400 | 0.578900 |
1450 | 0.563200 |
1500 | 0.556800 |
1550 | 0.570300 |
1600 | 0.599800 |
1650 | 0.556000 |
1700 | 0.592500 |
1750 | 0.597200 |
1800 | 0.559100 |
1850 | 0.586100 |
1900 | 0.581100 |
1950 | 0.589400 |
2000 | 0.581100 |
2050 | 0.533100 |
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
with LORA :
PeftModelForCausalLM(
(base_model): LoraModel(
(model): StableLMEpochForCausalLM(
(model): StableLMEpochModel(
(embed_tokens): Embedding(50304, 2560)
(layers): ModuleList(
(0-31): 32 x DecoderLayer(
(self_attn): Attention(
(q_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=2560, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=2560, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
)
(k_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=2560, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=2560, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
)
(v_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=2560, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=2560, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
)
(o_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=2560, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=2560, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
)
(rotary_emb): RotaryEmbedding()
)
(mlp): MLP(
(gate_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=2560, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=6912, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=2560, out_features=6912, bias=False)
)
(up_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=2560, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=6912, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=2560, out_features=6912, bias=False)
)
(down_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=6912, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=2560, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=6912, out_features=2560, bias=False)
)
(act_fn): SiLU()
)
(input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
(post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
)
)
(norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
)
(lm_head): Linear(
in_features=2560, out_features=50304, bias=False
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=2560, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=50304, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
)
)
)
Compute Infrastructure
GCS
Hardware
T4
Software
transformers peft torch datasets
Model Card Authors [optional]
Model Card Contact
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Framework versions
- PEFT 0.6.2.dev0
- Downloads last month
- 5
Model tree for Tonic/stablemed
Base model
stabilityai/stablelm-3b-4e1t