robbert1010_lrate10b16

This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6021
  • Precisions: 0.8323
  • Recall: 0.7951
  • F-measure: 0.8088
  • Accuracy: 0.9164

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.6104 1.0 236 0.4304 0.8532 0.6700 0.6852 0.8707
0.32 2.0 472 0.3520 0.7761 0.7551 0.7413 0.8916
0.1989 3.0 708 0.3686 0.7500 0.7591 0.7465 0.9010
0.1331 4.0 944 0.4045 0.8289 0.7666 0.7835 0.9090
0.0784 5.0 1180 0.4307 0.8052 0.7759 0.7890 0.9092
0.0682 6.0 1416 0.4696 0.8101 0.7658 0.7770 0.9059
0.04 7.0 1652 0.5078 0.8450 0.7642 0.7820 0.9096
0.0256 8.0 1888 0.5718 0.8007 0.7830 0.7906 0.9058
0.0219 9.0 2124 0.5508 0.8078 0.7987 0.8000 0.9093
0.0162 10.0 2360 0.5786 0.8256 0.7791 0.7946 0.9141
0.0117 11.0 2596 0.5979 0.8360 0.7912 0.8046 0.9168
0.011 12.0 2832 0.6021 0.8323 0.7951 0.8088 0.9164
0.0079 13.0 3068 0.6115 0.8337 0.7956 0.8088 0.9166
0.0064 14.0 3304 0.6100 0.8305 0.7932 0.8064 0.9164

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tommert25/robbert1010_lrate10b16

Finetuned
(40)
this model