PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.
Usage (with Stable-baselines3)
TODO: Add your code
import gymnasium
from huggingface_sb3 import load_from_hub, package_to_hub
from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.env_util import make_vec_env
import gymnasium as gym
# First, we create our environment called LunarLander-v2
env = gym.make("LunarLander-v2")
# Then we reset this environment
observation, info = env.reset()
for _ in range(20):
# Take a random action
action = env.action_space.sample()
print("Action taken:", action)
# Do this action in the environment and get
# next_state, reward, terminated, truncated and info
observation, reward, terminated, truncated, info = env.step(action)
# If the game is terminated (in our case we land, crashed) or truncated (timeout)
if terminated or truncated:
# Reset the environment
print("Environment is reset")
observation, info = env.reset()
env.close()
# Create the environment
env = make_vec_env('LunarLander-v2', n_envs=16)
model = PPO(
policy = 'MlpPolicy',
env = env,
n_steps = 1024,
batch_size = 64,
n_epochs = 4,
gamma = 0.999,
gae_lambda = 0.98,
ent_coef = 0.01,
verbose=1)
# TODO: Train it for 1,000,000 timesteps
model.learn(total_timesteps=1000000)
# TODO: Specify file name for model and save the model to file
model_name = "ppo-LunarLander-v2"
model.save(model_name)
# TODO: Evaluate the agent
# Create a new environment for evaluation
eval_env = gym.make("LunarLander-v2")
# Evaluate the model with 10 evaluation episodes and deterministic=True
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
# Print the results
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
...
- Downloads last month
- 0
Evaluation results
- mean_reward on LunarLander-v2self-reported279.35 +/- 19.41