layoutlmv2-finetuned-sroie
This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on the sroie dataset. It achieves the following results on the evaluation set:
- Loss: 0.0291
- Address Precision: 0.9341
- Address Recall: 0.9395
- Address F1: 0.9368
- Address Number: 347
- Company Precision: 0.9570
- Company Recall: 0.9625
- Company F1: 0.9598
- Company Number: 347
- Date Precision: 0.9885
- Date Recall: 0.9885
- Date F1: 0.9885
- Date Number: 347
- Total Precision: 0.9253
- Total Recall: 0.9280
- Total F1: 0.9266
- Total Number: 347
- Overall Precision: 0.9512
- Overall Recall: 0.9546
- Overall F1: 0.9529
- Overall Accuracy: 0.9961
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 3000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Address Precision | Address Recall | Address F1 | Address Number | Company Precision | Company Recall | Company F1 | Company Number | Date Precision | Date Recall | Date F1 | Date Number | Total Precision | Total Recall | Total F1 | Total Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 0.05 | 157 | 0.8162 | 0.3670 | 0.7233 | 0.4869 | 347 | 0.0617 | 0.0144 | 0.0234 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.3346 | 0.1844 | 0.2378 | 0.9342 |
No log | 1.05 | 314 | 0.3490 | 0.8564 | 0.8934 | 0.8745 | 347 | 0.8610 | 0.9280 | 0.8932 | 347 | 0.7297 | 0.8559 | 0.7878 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.8128 | 0.6693 | 0.7341 | 0.9826 |
No log | 2.05 | 471 | 0.1845 | 0.7970 | 0.9049 | 0.8475 | 347 | 0.9211 | 0.9424 | 0.9316 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.8978 | 0.7089 | 0.7923 | 0.9835 |
0.7027 | 3.05 | 628 | 0.1194 | 0.9040 | 0.9222 | 0.9130 | 347 | 0.8880 | 0.9135 | 0.9006 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.9263 | 0.7061 | 0.8013 | 0.9853 |
0.7027 | 4.05 | 785 | 0.0762 | 0.9397 | 0.9424 | 0.9410 | 347 | 0.8889 | 0.9222 | 0.9052 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.7740 | 0.9078 | 0.8355 | 347 | 0.8926 | 0.9402 | 0.9158 | 0.9928 |
0.7027 | 5.05 | 942 | 0.0564 | 0.9282 | 0.9308 | 0.9295 | 347 | 0.9296 | 0.9510 | 0.9402 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.7801 | 0.8588 | 0.8176 | 347 | 0.9036 | 0.9323 | 0.9177 | 0.9946 |
0.0935 | 6.05 | 1099 | 0.0548 | 0.9222 | 0.9222 | 0.9222 | 347 | 0.6975 | 0.7378 | 0.7171 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.8608 | 0.8732 | 0.8670 | 347 | 0.8648 | 0.8804 | 0.8725 | 0.9921 |
0.0935 | 7.05 | 1256 | 0.0410 | 0.92 | 0.9280 | 0.9240 | 347 | 0.9486 | 0.9568 | 0.9527 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9091 | 0.9222 | 0.9156 | 347 | 0.9414 | 0.9488 | 0.9451 | 0.9961 |
0.0935 | 8.05 | 1413 | 0.0369 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9569 | 0.9597 | 0.9583 | 347 | 0.9772 | 0.9885 | 0.9828 | 347 | 0.9143 | 0.9222 | 0.9182 | 347 | 0.9463 | 0.9524 | 0.9494 | 0.9960 |
0.038 | 9.05 | 1570 | 0.0343 | 0.9282 | 0.9308 | 0.9295 | 347 | 0.9624 | 0.9597 | 0.9610 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9206 | 0.9020 | 0.9112 | 347 | 0.9500 | 0.9452 | 0.9476 | 0.9958 |
0.038 | 10.05 | 1727 | 0.0317 | 0.9395 | 0.9395 | 0.9395 | 347 | 0.9598 | 0.9625 | 0.9612 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9280 | 0.9280 | 0.9280 | 347 | 0.9539 | 0.9546 | 0.9543 | 0.9963 |
0.038 | 11.05 | 1884 | 0.0312 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9514 | 0.9597 | 0.9555 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9226 | 0.9280 | 0.9253 | 347 | 0.9498 | 0.9539 | 0.9518 | 0.9960 |
0.0236 | 12.05 | 2041 | 0.0318 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9043 | 0.8991 | 0.9017 | 347 | 0.9467 | 0.9474 | 0.9471 | 0.9956 |
0.0236 | 13.05 | 2198 | 0.0291 | 0.9337 | 0.9337 | 0.9337 | 347 | 0.9598 | 0.9625 | 0.9612 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9164 | 0.9164 | 0.9164 | 347 | 0.9496 | 0.9503 | 0.9499 | 0.9960 |
0.0236 | 14.05 | 2355 | 0.0300 | 0.9286 | 0.9366 | 0.9326 | 347 | 0.9459 | 0.9568 | 0.9513 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9275 | 0.9222 | 0.9249 | 347 | 0.9476 | 0.9510 | 0.9493 | 0.9959 |
0.0178 | 15.05 | 2512 | 0.0307 | 0.9366 | 0.9366 | 0.9366 | 347 | 0.9513 | 0.9568 | 0.9540 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9275 | 0.9222 | 0.9249 | 347 | 0.9510 | 0.9510 | 0.9510 | 0.9959 |
0.0178 | 16.05 | 2669 | 0.0300 | 0.9312 | 0.9366 | 0.9339 | 347 | 0.9543 | 0.9625 | 0.9584 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9171 | 0.9251 | 0.9211 | 347 | 0.9477 | 0.9532 | 0.9504 | 0.9959 |
0.0178 | 17.05 | 2826 | 0.0292 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9253 | 0.9280 | 0.9266 | 347 | 0.9519 | 0.9546 | 0.9532 | 0.9961 |
0.0178 | 18.05 | 2983 | 0.0291 | 0.9341 | 0.9395 | 0.9368 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9253 | 0.9280 | 0.9266 | 347 | 0.9512 | 0.9546 | 0.9529 | 0.9961 |
0.0149 | 19.01 | 3000 | 0.0291 | 0.9341 | 0.9395 | 0.9368 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9253 | 0.9280 | 0.9266 | 347 | 0.9512 | 0.9546 | 0.9529 | 0.9961 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.8.0+cu101
- Datasets 1.18.4.dev0
- Tokenizers 0.11.6
- Downloads last month
- 270
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.