File size: 7,726 Bytes
0209490 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
from fastchat.train.llama_flash_attn_monkey_patch import (
replace_llama_attn_with_flash_attn,
)
replace_llama_attn_with_flash_attn()
import json
from torch.utils.data import Dataset
from accelerate import Accelerator
from transformers import AutoModelForCausalLM, AutoConfig, AutoTokenizer, AdamW
import torch
from torch.nn.utils.rnn import pad_sequence
from tqdm import tqdm
import numpy as np
IGNORE_TOKEN_ID = -100
class MixData(Dataset):
def __init__(self, dataset, ratio, tokenizer):
super(Dataset, self).__init__()
self.dataset = dataset
self.data_size = [len(c) for c in self.dataset]
ratio = [r if isinstance(r, int) else s for r, s in zip(ratio, self.data_size)]
self.ratio = ratio
self.tokenizer = tokenizer
self.sample_size = [int(self.data_size[0] / self.ratio[0] * r) for r in self.ratio]
print(self.data_size, self.sample_size, [c1 / c2 for c1, c2 in zip(self.sample_size, self.data_size)])
@staticmethod
def rounder(number):
rand = np.random.rand()
if rand < number - int(number):
return int(number) + 1
else:
return int(number)
@staticmethod
def choice_index(number, sample_size):
for i in range(len(sample_size)):
if number < sum(sample_size[:i + 1]):
return i, number - sum(sample_size[:i])
def __getitem__(self, index):
corpus_id, index = self.choice_index(index, self.sample_size)
rand = np.random.rand()
index = self.rounder((index + rand) / self.sample_size[corpus_id] * self.data_size[corpus_id])
index = min(index, len(self.dataset[corpus_id]) - 1)
return self.dataset[corpus_id][index]
def __len__(self):
return sum(self.sample_size)
def set_ratio(self, ratio):
self.ratio = ratio
self.data_size = [len(c) for c in self.dataset]
self.sample_size = [int(self.data_size[0] / self.ratio[0] * r) for r in self.ratio]
print(self.data_size, self.sample_size, [c1 / c2 for c1, c2 in zip(self.sample_size, self.data_size)])
def collate_fn(self, data):
input_ids, labels = zip(*data)
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
labels = pad_sequence(labels, batch_first=True, padding_value=-100)
attention_mask = input_ids.ne(self.tokenizer.pad_token_id)
features = {
'input_ids': input_ids.long(),
'labels': labels.long(),
'attention_mask': attention_mask.long(),
}
return features
def last_index(lst, value):
return next((len(lst) - i - 1 for i, x in enumerate(lst[::-1]) if x != value), -1)
def safe_ids(ids, max_value, pad_id):
return [i if i < max_value else pad_id for i in ids]
dummy_message = [{"role": "user", "content": "Who are you?"},
{"role": "assistant", "content": "I am vicuna, a language model trained by researchers from open-source community."},
{"role": "user", "content": "What can you do?"},
{"role": "assistant", "content": "I can chat with you."}]
def tokenize(messages, tokenizer):
roles = {"user": "USER", "assistant": "ASSISTANT"}
input_ids = []
labels = []
system = "A chat between a curious user and an artificial intelligence assistant. " \
"The assistant gives helpful, detailed, and polite answers to the user's questions."
system_ids = tokenizer.encode(system, add_special_tokens=False)
input_ids += system_ids
labels += [IGNORE_TOKEN_ID] * len(system_ids)
for i, turn in enumerate(messages):
role = roles.get(turn['role'], 'USER')
content = turn['content']
content = content.strip()
if role == 'ASSISTANT':
content += '</s>'
role_ids = tokenizer.encode(role + ":", add_special_tokens=False)
content_ids = tokenizer.encode(content, add_special_tokens=False, truncation=True,
max_length=tokenizer.model_max_length)
input_ids += role_ids + content_ids
if role == 'ASSISTANT':
labels += [IGNORE_TOKEN_ID] * len(role_ids) + content_ids
else:
labels += [IGNORE_TOKEN_ID] * (len(role_ids) + len(content_ids))
if tokenizer.add_bos_token:
input_ids = [tokenizer.bos_token_id] + input_ids
labels = [IGNORE_TOKEN_ID] + labels
input_ids = input_ids[:tokenizer.model_max_length]
labels = labels[:tokenizer.model_max_length]
trunc_id = last_index(labels, IGNORE_TOKEN_ID) + 1
input_ids = input_ids[:trunc_id]
labels = labels[:trunc_id]
if len(labels) == 0:
return tokenize(dummy_message, tokenizer)
input_ids = safe_ids(input_ids, tokenizer.vocab_size, tokenizer.pad_token_id)
labels = safe_ids(labels, tokenizer.vocab_size, IGNORE_TOKEN_ID)
return input_ids, labels
class VicunaData(Dataset):
def __init__(self, data, tokenizer):
self.data = data
self.tokenizer = tokenizer
def __len__(self):
return len(self.data)
def __getitem__(self, item):
item = self.data[item]
input_ids, labels = tokenize(item, self.tokenizer)
return torch.tensor(input_ids), torch.tensor(labels)
def collate_fn(self, data):
input_ids, labels = zip(*data)
input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
labels = pad_sequence(labels, batch_first=True, padding_value=IGNORE_TOKEN_ID)
attention_mask = input_ids.ne(self.tokenizer.pad_token_id)
features = {
'input_ids': input_ids.long(),
'labels': labels.long(),
'attention_mask': attention_mask.long(),
}
return features
def main():
accelerator = Accelerator(gradient_accumulation_steps=4)
batch_size = 4
save_path = 'out/baichuan-vicuna-7b'
model_name = 'fireballoon/baichuan-llama-7b'
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, padding_side="right", model_max_length=4096)
tokenizer.pad_token = tokenizer.unk_token
model = AutoModelForCausalLM.from_pretrained(model_name)
model.config.use_cache = False
model.gradient_checkpointing_enable()
dataset = VicunaData(
json.load(open('data/new/share_gpt-90k.json')) +
json.load(open('data/new/cot-75k.json')) +
json.load(open('data/new/leet-9k.json')), tokenizer)
print(len(dataset))
data_loader = torch.utils.data.DataLoader(dataset, collate_fn=dataset.collate_fn,
batch_size=batch_size, num_workers=0, shuffle=True)
optimizer = AdamW(model.parameters(), 2e-5)
model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader)
for epoch in range(10):
accelerator.print(f'Training {save_path} {epoch}')
accelerator.wait_for_everyone()
model.train()
tk0 = tqdm(data_loader, total=len(data_loader))
loss_report = []
for batch in tk0:
with accelerator.accumulate(model):
out = model(**batch)
loss = out.loss
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), 1.)
optimizer.step()
optimizer.zero_grad()
loss_report.append(accelerator.gather(loss).mean().item())
tk0.set_postfix(loss=sum(loss_report[-100:]) / len(loss_report[-100:]))
accelerator.wait_for_everyone()
model.save_checkpoint(f'{save_path}/{epoch}')
if __name__ == '__main__':
main()
|