File size: 18,181 Bytes
ff54e19
 
 
 
 
 
6490f46
 
 
ff54e19
 
 
6490f46
ff54e19
 
6490f46
ff54e19
 
6490f46
 
ff54e19
 
 
 
 
 
 
 
b5161ee
 
ff54e19
 
 
 
 
 
885e89f
 
 
 
 
 
 
 
 
 
ff54e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5539714
 
 
 
 
 
 
 
 
ff54e19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6490f46
ff54e19
 
 
 
6490f46
ff54e19
 
 
 
 
 
 
 
 
 
 
 
 
 
6490f46
 
 
ff54e19
 
 
 
6490f46
 
ff54e19
 
 
 
9bbbdc1
 
 
 
 
 
 
 
6490f46
9bbbdc1
6490f46
 
9bbbdc1
 
 
 
 
fe5a7ee
ff54e19
 
fe5a7ee
 
 
 
 
9bbbdc1
6490f46
fe5a7ee
 
 
 
 
 
 
 
80224e8
fe5a7ee
 
9bbbdc1
 
fe5a7ee
 
9bbbdc1
fe5a7ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bbbdc1
 
 
 
fe5a7ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bbbdc1
fe5a7ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6490f46
fe5a7ee
 
 
 
 
 
9bbbdc1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
---
inference: false
license: bigcode-openrail-m
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# WizardLM's WizardCoder 15B 1.0 GPTQ

These files are GPTQ 4bit model files for [WizardLM's WizardCoder 15B 1.0](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0).

It is the result of quantising to 4bit using [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ).

The WizardCoder 15B 1.0 GPTQ LLM is hosted on the [Clarifai](https://clarifai.com/wizardlm/generate/models/wizardCoder-15B) from this repository checkpoints. Model easily accessible through its API.

## Repositories available

* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardCoder-15B-1.0-GPTQ)
* [4, 5, and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardCoder-15B-1.0-GGML)
* [WizardLM's unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0)

## Prompt template

```
Below is an instruction that describes a task. Write a response that appropriately completes the request

### Instruction: prompt

### Response:
```

## How to easily download and use this model in text-generation-webui

Please make sure you're using the latest version of text-generation-webui

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/WizardCoder-15B-1.0-GPTQ`.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done"
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `WizardCoder-15B-1.0-GPTQ`
7. The model will automatically load, and is now ready for use!
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
  * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!

## How to use this GPTQ model from Python code

First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:

`pip install auto-gptq`

Then try the following example code:

```python
from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import argparse

model_name_or_path = "TheBloke/WizardCoder-15B-1.0-GPTQ"
# Or to load it locally, pass the local download path
# model_name_or_path = "/path/to/models/TheBloke_WizardCoder-15B-1.0-GPTQ"

use_triton = False

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        use_safetensors=True,
        device="cuda:0",
        use_triton=use_triton,
        quantize_config=None)

# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

prompt_template = '''Below is an instruction that describes a task. Write a response that appropriately completes the request

### Instruction: {prompt}

### Response:'''
prompt = prompt_template.format(prompt="How do I sort a list in Python?")

outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.2, top_k=50, top_p=0.95)

print(outputs[0]['generated_text'])
```

## Provided files

**gptq_model-4bit--1g.safetensors**

This will work with AutoGPTQ and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.

It was created without group_size to lower VRAM requirements, and with --act-order (desc_act) to boost inference accuracy as much as possible.

* `gptq_model-4bit--1g.safetensors`
  * Works with AutoGPTQ in CUDA or Triton modes.
  * Works with text-generation-webui, including one-click-installers.
  * Does not work with GPTQ-for-LLaMa.
  * Parameters: Groupsize = -1. Act Order / desc_act = True.

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute.

Thanks to the [chirper.ai](https://chirper.ai) team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: WizardLM's WizardCoder 15B 1.0

This is the Full-Weight of WizardCoder.

**Repository**: https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder

**Twitter**: https://twitter.com/WizardLM_AI/status/1669109414559911937

**Paper**: Is coming, with brand-new Evol+ methods for code LLMs.

**Demos (Only support code-related English instructions now.)**:

[Demo](https://8194635813f45a1e.gradio.app/),
[Backup Demo1](https://375cead61e4db124.gradio.app/),
[Backup Demo2](https://1594ad375fc80cc7.gradio.app/),
[Backup Demo3](https://4989441110ee350f.gradio.app/)



# WizardCoder: Empowering Code Large Language Models with Evol-Instruct


To develop our WizardCoder model, we begin by adapting the Evol-Instruct method specifically for coding tasks. This involves tailoring the prompt to the domain of code-related instructions. Subsequently, we fine-tune the Code LLM, StarCoder, utilizing the newly created instruction-following training set.

## News

- 🔥 Our **WizardCoder-15B-v1.0** model achieves the **57.3 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval), which is **22.3** points higher than the SOTA open-source Code LLMs.
- 🔥 We released **WizardCoder-15B-v1.0** trained with **78k** evolved code instructions. Please checkout the [Model Weights](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0), and [Paper]().
- &#x1F4E3; Please refer to our Twitter account https://twitter.com/WizardLM_AI and HuggingFace Repo https://huggingface.co/WizardLM . We will use them to announce any new release at the 1st time.


## Comparing WizardCoder with the Closed-Source Models.


🔥 The following figure shows that our **WizardCoder attains the third position in this benchmark**, surpassing Claude-Plus (59.8 vs. 53.0) and Bard (59.8 vs. 44.5). Notably, our model exhibits a substantially smaller size compared to these models.

<p align="center" width="100%">
<a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/WizardCoder/imgs/pass1.png" alt="WizardCoder" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a>
</p>

❗**Note: In this study, we copy the scores for HumanEval and HumanEval+ from the [LLM-Humaneval-Benchmarks](https://github.com/my-other-github-account/llm-humaneval-benchmarks). Notably, all the mentioned models generate code solutions for each problem utilizing a **single attempt**, and the resulting pass rate percentage is reported. Our **WizardCoder** generates answers using greedy decoding and tests with the same [code](https://github.com/evalplus/evalplus).**

## Comparing WizardCoder with the Open-Source Models.

The following table clearly demonstrates that our **WizardCoder** exhibits a substantial performance advantage over all the open-source models. ❗**If you are confused with the different scores of our model (57.3 and 59.8), please check the Notes.**


| Model            | HumanEval Pass@1 | MBPP Pass@1 |
|------------------|------------------|-------------|
| CodeGen-16B-Multi| 18.3             |20.9         |
| CodeGeeX         | 22.9             |24.4         |
| LLaMA-33B        | 21.7             |30.2         |
| LLaMA-65B        | 23.7             |37.7         |
| PaLM-540B        | 26.2             |36.8         |
| PaLM-Coder-540B  | 36.0             |47.0         |
| PaLM 2-S         | 37.6             |50.0         |
| CodeGen-16B-Mono | 29.3             |35.3         |
| Code-Cushman-001 | 33.5             |45.9         |
| StarCoder-15B    | 33.6             |43.6*        |
| InstructCodeT5+  | 35.0             |--           |
| WizardLM-30B  1.0| 37.8             |--           |
| WizardCoder-15B  1.0 | **57.3**     |**51.8**     |


❗**Note: The reproduced result of StarCoder on MBPP.****Note: The above table conducts a comprehensive comparison of our **WizardCoder** with other models on the HumanEval and MBPP benchmarks. We adhere to the approach outlined in previous studies by generating **20 samples** for each problem to estimate the pass@1 score and evaluate with the same [code](https://github.com/openai/human-eval/tree/master). The scores of GPT4 and GPT3.5 reported by [OpenAI](https://openai.com/research/gpt-4) are 67.0 and 48.1 (maybe these are the early version GPT4&3.5).**

## Call for Feedbacks
We welcome everyone to use your professional and difficult instructions to evaluate WizardCoder, and show us examples of poor performance and your suggestions in the [issue discussion](https://github.com/nlpxucan/WizardLM/issues) area. We are focusing on improving the Evol-Instruct now and hope to relieve existing weaknesses and issues in the the next version of WizardCoder. After that, we will open the code and pipeline of up-to-date Evol-Instruct algorithm and work with you together to improve it.


## Contents

1. [Online Demo](#online-demo)

2. [Fine-tuning](#fine-tuning)

3. [Inference](#inference)

4. [Evaluation](#evaluation)

5. [Citation](#citation)

6. [Disclaimer](#disclaimer)

## Online Demo

We will provide our latest models for you to try for as long as possible. If you find a link is not working, please try another one. At the same time, please try as many **real-world** and **challenging** code-related problems that you encounter in your work and life as possible. We will continue to evolve our models with your feedbacks.



## Fine-tuning

We fine-tune WizardCoder using the modified code `train.py` from [Llama-X](https://github.com/AetherCortex/Llama-X).
We fine-tune StarCoder-15B with the following hyperparameters:

| Hyperparameter | StarCoder-15B |
|----------------|---------------|
| Batch size     | 512           |
| Learning rate  | 2e-5          |
| Epochs         | 3             |
| Max length     | 2048          |
| Warmup step    | 30            |
| LR scheduler   | cosine        |

To reproduce our fine-tuning of WizardCoder, please follow the following steps:
1. According to the instructions of [Llama-X](https://github.com/AetherCortex/Llama-X), install the environment, download the training code, and deploy. (Note: `deepspeed==0.9.2` and `transformers==4.29.2`)
2. Replace the `train.py` with the `train_wizardcoder.py` in our repo (`src/train_wizardcoder.py`)
3. Login Huggingface:
```bash
huggingface-cli login
```
4. Execute the following training command:
```bash
deepspeed train_wizardcoder.py \
    --model_name_or_path "bigcode/starcoder" \
    --data_path "/your/path/to/code_instruction_data.json" \
    --output_dir "/your/path/to/ckpt" \
    --num_train_epochs 3 \
    --model_max_length 2048 \
    --per_device_train_batch_size 16 \
    --per_device_eval_batch_size 1 \
    --gradient_accumulation_steps 4 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 50 \
    --save_total_limit 2 \
    --learning_rate 2e-5 \
    --warmup_steps 30 \
    --logging_steps 2 \
    --lr_scheduler_type "cosine" \
    --report_to "tensorboard" \
    --gradient_checkpointing True \
    --deepspeed configs/deepspeed_config.json \
    --fp16 True
```

## Inference

We provide the decoding script for WizardCoder, which reads a input file and generates corresponding responses for each sample, and finally consolidates them into an output file.

You can specify `base_model`, `input_data_path` and `output_data_path` in `src\inference_wizardcoder.py` to set the decoding model, path of input file and path of output file.

```bash
pip install jsonlines
```

The decoding command is:
```
python src\inference_wizardcoder.py \
    --base_model "/your/path/to/ckpt" \
    --input_data_path "/your/path/to/input/data.jsonl" \
    --output_data_path "/your/path/to/output/result.jsonl"
```

The format of `data.jsonl` should be:
```
{"idx": 11, "Instruction": "Write a Python code to count 1 to 10."}
{"idx": 12, "Instruction": "Write a Jave code to sum 1 to 10."}
```

The prompt for our WizardCoder in `src\inference_wizardcoder.py` is:
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:
```

## Evaluation

We provide the evaluation script on HumanEval for WizardCoder.

1. According to the instructions of [HumanEval](https://github.com/openai/human-eval), install the environment.
2. Run the following script to generate the answer.
```bash
model="/path/to/your/model"
temp=0.2
max_len=2048
pred_num=200
num_seqs_per_iter=2

output_path=preds/T${temp}_N${pred_num}

mkdir -p ${output_path}
echo 'Output path: '$output_path
echo 'Model to eval: '$model

# 164 problems, 21 per GPU if GPU=8
index=0
gpu_num=8
for ((i = 0; i < $gpu_num; i++)); do
  start_index=$((i * 21))
  end_index=$(((i + 1) * 21))

  gpu=$((i))
  echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu}
  ((index++))
  (
    CUDA_VISIBLE_DEVICES=$gpu python humaneval_gen.py --model ${model} \
      --start_index ${start_index} --end_index ${end_index} --temperature ${temp} \
      --num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path}
  ) &
  if (($index % $gpu_num == 0)); then wait; fi
done
```
3. Run the post processing code `src/process_humaneval.py` to collect the code completions from all answer files.
```bash
output_path=preds/T${temp}_N${pred_num}

echo 'Output path: '$output_path
python process_humaneval.py --path ${output_path} --out_path ${output_path}.jsonl --add_prompt

evaluate_functional_correctness ${output_path}.jsonl
```

## Citation

Please cite the repo if you use the data or code in this repo.

```
@misc{luo2023wizardcoder,
      title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct},
      author={Ziyang Luo and Can Xu and Pu Zhao and Qingfeng Sun and Xiubo Geng and Wenxiang Hu and Chongyang Tao and Jing Ma and Qingwei Lin and Daxin Jiang},
      year={2023},
}
```
## Disclaimer

The resources, including code, data, and model weights, associated with this project are restricted for academic research purposes only and cannot be used for commercial purposes. The content produced by any version of WizardCoder is influenced by uncontrollable variables such as randomness, and therefore, the accuracy of the output cannot be guaranteed by this project. This project does not accept any legal liability for the content of the model output, nor does it assume responsibility for any losses incurred due to the use of associated resources and output results.