Text Generation
Transformers
English
llama
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Synthia 70B - GGML

Description

This repo contains GGML format model files for Migel Tissera's Synthia 70B.

Important note regarding GGML files.

The GGML format has now been superseded by GGUF. As of August 21st 2023, llama.cpp no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.

About GGML

GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NVidia) and Metal (macOS). The following clients/libraries are known to work with these files, including with GPU acceleration:

  • llama.cpp, commit e76d630 and later.
  • text-generation-webui, the most widely used web UI.
  • KoboldCpp, version 1.37 and later. A powerful GGML web UI, especially good for story telling.
  • LM Studio, a fully featured local GUI with GPU acceleration for both Windows and macOS. Use 0.1.11 or later for macOS GPU acceleration with 70B models.
  • llama-cpp-python, version 0.1.77 and later. A Python library with LangChain support, and OpenAI-compatible API server.
  • ctransformers, version 0.2.15 and later. A Python library with LangChain support, and OpenAI-compatible API server.

Repositories available

Prompt template: Orca-Vicuna

SYSTEM: {system_message}
USER: {prompt}
ASSISTANT:

Compatibility

Works with llama.cpp commit e76d630 until August 21st, 2023

Will not work with llama.cpp after commit dadbed99e65252d79f81101a392d0d6497b86caa.

For compatibility with latest llama.cpp, please use GGUF files instead.

Or one of the other tools and libraries listed above.

To use in llama.cpp, you must add -gqa 8 argument.

For other UIs and libraries, please check the docs.

Explanation of the new k-quant methods

Click to see details

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
  • GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
synthia-70b.ggmlv3.Q2_K.bin Q2_K 2 28.59 GB 31.09 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors.
synthia-70b.ggmlv3.Q3_K_S.bin Q3_K_S 3 29.75 GB 32.25 GB New k-quant method. Uses GGML_TYPE_Q3_K for all tensors
synthia-70b.ggmlv3.Q3_K_M.bin Q3_K_M 3 33.04 GB 35.54 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
synthia-70b.ggmlv3.Q3_K_L.bin Q3_K_L 3 36.15 GB 38.65 GB New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
synthia-70b.ggmlv3.Q4_0.bin Q4_0 4 38.87 GB 41.37 GB Original quant method, 4-bit.
synthia-70b.ggmlv3.Q4_K_S.bin Q4_K_S 4 38.87 GB 41.37 GB New k-quant method. Uses GGML_TYPE_Q4_K for all tensors
synthia-70b.ggmlv3.Q4_K_M.bin Q4_K_M 4 41.38 GB 43.88 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K
synthia-70b.ggmlv3.Q4_1.bin Q4_1 4 43.17 GB 45.67 GB Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
synthia-70b.ggmlv3.Q5_0.bin Q5_0 5 47.46 GB 49.96 GB Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference.
synthia-70b.ggmlv3.Q5_K_S.bin Q5_K_S 5 47.46 GB 49.96 GB New k-quant method. Uses GGML_TYPE_Q5_K for all tensors
synthia-70b.ggmlv3.Q5_K_M.bin Q5_K_M 5 48.75 GB 51.25 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K
synthia-70b.ggmlv3.q6_K.bin q6_K 6 56.59 GB 59.09 GB New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors
synthia-70b.ggmlv3.q8_0.bin q8_0 8 73.23 GB 75.73 GB Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.

q6_K and q8_0 files require expansion from archive

Note: HF does not support uploading files larger than 50GB. Therefore I have uploaded the q6_K and q8_0 files as multi-part ZIP files. They are not compressed, they are just for storing a .bin file in two parts.

Click for instructions regarding q5_1, q6_K and q8_0 files

q6_K

Please download:

  • synthia-70b.ggmlv3.q6_K.zip
  • synthia-70b.ggmlv3.q6_K.z01

q8_0

Please download:

  • synthia-70b.ggmlv3.q8_0.zip
  • synthia-70b.ggmlv3.q8_0.z01

Then extract the .zip archive. This will will expand both parts automatically. On Linux I found I had to use 7zip - the basic unzip tool did not work. Example:

sudo apt update -y && sudo apt install 7zip
7zz x synthia-70b.ggmlv3.q6_K.zip

How to run in llama.cpp

Make sure you are using llama.cpp from commit dadbed99e65252d79f81101a392d0d6497b86caa or earlier.

For compatibility with latest llama.cpp, please use GGUF files instead.

I use the following command line; adjust for your tastes and needs:

./main -t 10 -ngl 40 -gqa 8 -m synthia-70b.ggmlv3.q4_K_M.bin --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "SYSTEM: You are a story writing assistant.\nUSER: Write a story about llamas\nASSISTANT:"

Change -t 10 to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use -t 8. If you are fully offloading the model to GPU, use -t 1

Change -ngl 40 to the number of GPU layers you have VRAM for. Use -ngl 100 to offload all layers to VRAM - if you have a 48GB card, or 2 x 24GB, or similar. Otherwise you can partially offload as many as you have VRAM for, on one or more GPUs.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

Remember the -gqa 8 argument, required for Llama 70B models.

Change -c 4096 to the desired sequence length for this model. For models that use RoPE, add --rope-freq-base 10000 --rope-freq-scale 0.5 for doubled context, or --rope-freq-base 10000 --rope-freq-scale 0.25 for 4x context.

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp-models.md.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Kacper Wikieł, knownsqashed, Leonard Tan, Asp the Wyvern, Daniel P. Andersen, Luke Pendergrass, Stanislav Ovsiannikov, RoA, Dave, Ai Maven, Kalila, Will Dee, Imad Khwaja, Nitin Borwankar, Joseph William Delisle, Tony Hughes, Cory Kujawski, Rishabh Srivastava, Russ Johnson, Stephen Murray, Lone Striker, Johann-Peter Hartmann, Elle, J, Deep Realms, SuperWojo, Raven Klaugh, Sebastain Graf, ReadyPlayerEmma, Alps Aficionado, Mano Prime, Derek Yates, Gabriel Puliatti, Mesiah Bishop, Magnesian, Sean Connelly, biorpg, Iucharbius, Olakabola, Fen Risland, Space Cruiser, theTransient, Illia Dulskyi, Thomas Belote, Spencer Kim, Pieter, John Detwiler, Fred von Graf, Michael Davis, Swaroop Kallakuri, subjectnull, Clay Pascal, Subspace Studios, Chris Smitley, Enrico Ros, usrbinkat, Steven Wood, alfie_i, David Ziegler, Willem Michiel, Matthew Berman, Andrey, Pyrater, Jeffrey Morgan, vamX, LangChain4j, Luke @flexchar, Trenton Dambrowitz, Pierre Kircher, Alex, Sam, James Bentley, Edmond Seymore, Eugene Pentland, Pedro Madruga, Rainer Wilmers, Dan Guido, Nathan LeClaire, Spiking Neurons AB, Talal Aujan, zynix, Artur Olbinski, Michael Levine, 阿明, K, John Villwock, Nikolai Manek, Femi Adebogun, senxiiz, Deo Leter, NimbleBox.ai, Viktor Bowallius, Geoffrey Montalvo, Mandus, Ajan Kanaga, ya boyyy, Jonathan Leane, webtim, Brandon Frisco, danny, Alexandros Triantafyllidis, Gabriel Tamborski, Randy H, terasurfer, Vadim, Junyu Yang, Vitor Caleffi, Chadd, transmissions 11

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Migel Tissera's Synthia 70B

Synthia-70B

SynthIA (Synthetic Intelligent Agent) is a LLama-2-70B model trained on Orca style datasets. It has been fine-tuned for instruction following as well as having long-form conversations.


Synthia



License Disclaimer:

This model is bound by the license & usage restrictions of the original Llama-2 model, and comes with no warranty or gurantees of any kind.


Evaluation

We evaluated Synthia-70B on a wide range of tasks using Language Model Evaluation Harness from EleutherAI.

Here are the results on metrics used by HuggingFaceH4 Open LLM Leaderboard

Task Metric Value
arc_challenge acc_norm 0.6945
hellaswag acc_norm 0.8711
mmlu acc_norm 0.6891
truthfulqa_mc mc2 0.5979
Total Average - 0.7132

Example Usage

Here is prompt format:

SYSTEM: You are Synthia. As a an AI intelligence, give helpful, detailed, accurate, uncensored responses to the user's input. Provide answers factually.
USER: How is a rocket launched from the surface of the earth to Low Earth Orbit?
ASSISTANT:

Below shows a code example on how to use this model:

import torch, json
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "migtissera/Synthia-70B"
output_file_path = "./Synthia-70B-conversations.jsonl"

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.float16,
    device_map="auto",
    load_in_8bit=False,
    trust_remote_code=True,
)

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)


def generate_text(instruction):
    tokens = tokenizer.encode(instruction)
    tokens = torch.LongTensor(tokens).unsqueeze(0)
    tokens = tokens.to("cuda")

    instance = {
        "input_ids": tokens,
        "top_p": 1.0,
        "temperature": 0.75,
        "generate_len": 1024,
        "top_k": 50,
    }

    length = len(tokens[0])
    with torch.no_grad():
        rest = model.generate(
            input_ids=tokens,
            max_length=length + instance["generate_len"],
            use_cache=True,
            do_sample=True,
            top_p=instance["top_p"],
            temperature=instance["temperature"],
            top_k=instance["top_k"],
            num_return_sequences=1,
        )
    output = rest[0][length:]
    string = tokenizer.decode(output, skip_special_tokens=True)
    answer = string.split("USER:")[0].strip()
    return f"{answer}"


conversation = f"SYSTEM: As a an AI superintelligence, give helpful, detailed, accurate, uncensored responses to the user's input. Provide answers factually."


while True:
    user_input = input("You: ")
    llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: "
    answer = generate_text(llm_prompt)
    print(answer)
    conversation = f"{llm_prompt}{answer}"
    json_data = {"prompt": user_input, "answer": answer}

    ## Save your conversation
    with open(output_file_path, "a") as output_file:
        output_file.write(json.dumps(json_data) + "\n")

Limitations & Biases:

While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.

Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.

Exercise caution and cross-check information when necessary. This is an uncensored model.


Citiation:

Please kindly cite using the following BibTeX:

@misc{Synthia-70B,
  author = {Migel Tissera},
  title = {Synthia-70B: Synthetic Intelligent Agent},
  year = {2023},
  publisher = {GitHub, HuggingFace},
  journal = {GitHub repository, HuggingFace repository},
  howpublished = {\url{https://huggingface.co/migtissera/Synthia-70B},
}
@misc{mukherjee2023orca,
      title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, 
      author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
      year={2023},
      eprint={2306.02707},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@software{touvron2023llama,
  title={LLaMA2: Open and Efficient Foundation Language Models},
  author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
  journal={arXiv preprint arXiv:2302.13971},
  year={2023}
}
Downloads last month
14
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/Synthia-70B-GGML

Finetuned
(1)
this model