TheBloke's picture
Initial GPTQ model commit
fde5a3e
|
raw
history blame
15 kB
metadata
datasets:
  - conceptofmind/cot_submix_original
  - conceptofmind/flan2021_submix_original
  - conceptofmind/t0_submix_original
  - conceptofmind/niv2_submix_original
inference: false
language:
  - en
license: other
model_type: llama
pipeline_tag: text-generation
TheBlokeAI

Stability AI's FreeWilly 2 GPTQ

These files are GPTQ model files for Stability AI's FreeWilly 2.

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

Repositories available

Prompt template: Orca-Hashes

### System:
This is a system prompt, please behave and help the user.

### User:
{prompt}

### Assistant:

Provided files

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch. See below for instructions on fetching from different branches.

Branch Bits Group Size Act Order (desc_act) File Size ExLlama Compatible? Made With Description
main 4 128 False 36.65 GB True AutoGPTQ Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options.
gptq-4bit-32g-actorder_True 4 32 True Processing, coming soon True AutoGPTQ 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed.
gptq-4bit-64g-actorder_True 4 64 True 37.99 GB True AutoGPTQ 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed.
gptq-4bit-128g-actorder_True 4 128 True Processing, coming soon True AutoGPTQ 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed.
gptq-3bit--1g-actorder_True 3 None True Processing, coming soon False AutoGPTQ 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g.
gptq-3bit-128g-actorder_False 3 128 False Processing, coming soon False AutoGPTQ 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None.
gptq-3bit-128g-actorder_True 3 128 True Processing, coming soon False AutoGPTQ 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed.
gptq-3bit-64g-actorder_True 3 64 True Processing, coming soon False AutoGPTQ 3-bit, with group size 64g and act-order. Highest quality 3-bit option. Poor AutoGPTQ CUDA speed.

How to download from branches

  • In text-generation-webui, you can add :branch to the end of the download name, eg TheBloke/FreeWilly2-GPTQ:gptq-4bit-32g-actorder_True
  • With Git, you can clone a branch with:
git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/FreeWilly2-GPTQ`
  • In Python Transformers code, the branch is the revision parameter; see below.

How to easily download and use this model in text-generation-webui.

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.

  1. Click the Model tab.
  2. Under Download custom model or LoRA, enter TheBloke/FreeWilly2-GPTQ.
  • To download from a specific branch, enter for example TheBloke/FreeWilly2-GPTQ:gptq-4bit-32g-actorder_True
  • see Provided Files above for the list of branches for each option.
  1. Click Download.
  2. The model will start downloading. Once it's finished it will say "Done"
  3. In the top left, click the refresh icon next to Model.
  4. In the Model dropdown, choose the model you just downloaded: FreeWilly2-GPTQ
  5. The model will automatically load, and is now ready for use!
  6. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
  • Note that you do not need to set GPTQ parameters any more. These are set automatically from the file quantize_config.json.
  1. Once you're ready, click the Text Generation tab and enter a prompt to get started!

How to use this GPTQ model from Python code

First make sure you have AutoGPTQ installed:

GITHUB_ACTIONS=true pip install auto-gptq

Then try the following example code:

from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig

model_name_or_path = "TheBloke/FreeWilly2-GPTQ"
model_basename = "gptq_model-4bit-128g"

use_triton = False

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        model_basename=model_basename,
        use_safetensors=True,
        trust_remote_code=False,
        device="cuda:0",
        use_triton=use_triton,
        quantize_config=None)

"""
To download from a specific branch, use the revision parameter, as in this example:

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        revision="gptq-4bit-32g-actorder_True",
        model_basename=model_basename,
        use_safetensors=True,
        trust_remote_code=False,
        device="cuda:0",
        quantize_config=None)
"""

prompt = "Tell me about AI"
prompt_template=f'''### System:
This is a system prompt, please behave and help the user.

### User:
{prompt}

### Assistant:
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.95,
    repetition_penalty=1.15
)

print(pipe(prompt_template)[0]['generated_text'])

Compatibility

The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.

ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Luke from CarbonQuill, Aemon Algiz.

Patreon special mentions: Slarti, Chadd, John Detwiler, Pieter, zynix, K, Mano Prime, ReadyPlayerEmma, Ai Maven, Leonard Tan, Edmond Seymore, Joseph William Delisle, Luke @flexchar, Fred von Graf, Viktor Bowallius, Rishabh Srivastava, Nikolai Manek, Matthew Berman, Johann-Peter Hartmann, ya boyyy, Greatston Gnanesh, Femi Adebogun, Talal Aujan, Jonathan Leane, terasurfer, David Flickinger, William Sang, Ajan Kanaga, Vadim, Artur Olbinski, Raven Klaugh, Michael Levine, Oscar Rangel, Randy H, Cory Kujawski, RoA, Dave, Alex, Alexandros Triantafyllidis, Fen Risland, Eugene Pentland, vamX, Elle, Nathan LeClaire, Khalefa Al-Ahmad, Rainer Wilmers, subjectnull, Junyu Yang, Daniel P. Andersen, SuperWojo, LangChain4j, Mandus, Kalila, Illia Dulskyi, Trenton Dambrowitz, Asp the Wyvern, Derek Yates, Jeffrey Morgan, Deep Realms, Imad Khwaja, Pyrater, Preetika Verma, biorpg, Gabriel Tamborski, Stephen Murray, Spiking Neurons AB, Iucharbius, Chris Smitley, Willem Michiel, Luke Pendergrass, Sebastain Graf, senxiiz, Will Dee, Space Cruiser, Karl Bernard, Clay Pascal, Lone Striker, transmissions 11, webtim, WelcomeToTheClub, Sam, theTransient, Pierre Kircher, chris gileta, John Villwock, Sean Connelly, Willian Hasse

Thank you to all my generous patrons and donaters!

Original model card: Stability AI's FreeWilly 2

FreeWilly

Model Description

FreeWilly2 is a Llama2 70B model finetuned on an Orca style Dataset

Usage

Start chatting with FreeWilly2 using the following code snippet:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

tokenizer = AutoTokenizer.from_pretrained("stabilityai/FreeWilly2", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("stabilityai/FreeWilly2", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
system_prompt = "### System:\nYou are Free Willy, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n"

message = "Write me a poem please"
prompt = f"{system_prompt}### User: {message}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256)

print(tokenizer.decode(output[0], skip_special_tokens=True))

FreeWilly should be used with this prompt format:

### System:
This is a system prompt, please behave and help the user.

### User:
Your prompt here

### Assistant
The output of FreeWilly2

Model Details

  • Developed by: Stability AI
  • Model type: FreeWilly is an auto-regressive language model fine-tuned on Llama2 70B.
  • Language(s): English
  • Library: HuggingFace Transformers
  • License: Fine-tuned checkpoints (FreeWilly2) is licensed under the Non-Commercial Creative Commons license (CC BY-NC-4.0)
  • Contact: For questions and comments about the model, please email lm@stability.ai

Training Dataset

FreeWilly2 is trained on our internal Orca-style dataset

Training Procedure

Models are learned via supervised fine-tuning on the aforementioned datasets, trained in mixed-precision (BF16), and optimized with AdamW. We outline the following hyperparameters:

Dataset Batch Size Learning Rate Learning Rate Decay Warm-up Weight Decay Betas
Orca pt1 packed 256 3e-5 Cosine to 3e-6 100 1e-6 (0.9, 0.95)
Orca pt2 unpacked 512 3e-5 Cosine to 3e-6 100 1e-6 (0.9, 0.95)

Use and Limitations

Intended Use

These models are intended for research only, in adherence with the CC BY-NC-4.0 license.

Limitations and bias

Although the aforementioned dataset helps to steer the base language models into "safer" distributions of text, not all biases and toxicity can be mitigated through fine-tuning. We ask that users be mindful of such potential issues that can arise in generated responses. Do not treat model outputs as substitutes for human judgment or as sources of truth. Please use it responsibly.

Citations

@misc{touvron2023llama,
      title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, 
      author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
      year={2023},
      eprint={2307.09288},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{mukherjee2023orca,
      title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, 
      author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
      year={2023},
      eprint={2306.02707},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}