File size: 21,063 Bytes
e97b123
 
 
bb19645
 
5efc6d1
 
 
 
 
e97b123
5efc6d1
 
 
e97b123
bb19645
 
 
 
 
 
 
 
 
 
 
 
e97b123
 
 
 
7acd2d7
 
 
e97b123
 
 
7acd2d7
e97b123
 
7acd2d7
e97b123
 
7acd2d7
 
e97b123
 
 
 
 
 
274b8a3
e97b123
 
 
 
 
 
274b8a3
 
e97b123
 
bb19645
e97b123
274b8a3
e97b123
274b8a3
e97b123
274b8a3
e97b123
 
 
 
 
274b8a3
 
e97b123
 
274b8a3
e97b123
 
274b8a3
bb19645
 
 
 
274b8a3
bb19645
 
 
 
274b8a3
 
e97b123
 
 
 
 
274b8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb19645
 
 
 
 
274b8a3
bb19645
274b8a3
e97b123
274b8a3
 
 
e97b123
 
bb19645
e97b123
 
bb19645
e97b123
 
274b8a3
 
e97b123
 
 
 
274b8a3
e97b123
 
 
bb19645
e97b123
 
274b8a3
e97b123
 
 
 
274b8a3
e97b123
274b8a3
e97b123
274b8a3
e97b123
 
274b8a3
 
 
 
 
 
 
 
 
 
e97b123
274b8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
e97b123
274b8a3
e97b123
 
274b8a3
e97b123
 
274b8a3
bb19645
274b8a3
 
bb19645
274b8a3
e97b123
 
 
 
 
 
274b8a3
 
e97b123
 
274b8a3
e97b123
 
 
 
 
bb19645
e97b123
 
 
 
 
 
 
 
 
 
bb19645
e97b123
 
bb19645
 
e97b123
 
 
 
274b8a3
e97b123
274b8a3
e97b123
 
274b8a3
 
 
e97b123
274b8a3
 
e97b123
 
7acd2d7
e97b123
 
 
 
 
 
bb19645
e97b123
 
 
bb19645
 
e97b123
 
 
 
 
 
 
 
 
7acd2d7
e97b123
bb19645
e97b123
 
 
 
7acd2d7
 
e97b123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb19645
274b8a3
e97b123
 
274b8a3
e97b123
 
 
 
274b8a3
e97b123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274b8a3
e97b123
 
 
 
 
 
 
 
 
 
bb19645
e97b123
bb19645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274b8a3
e97b123
 
bb19645
 
 
e97b123
 
274b8a3
 
e97b123
 
 
 
274b8a3
e97b123
 
 
274b8a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
---
language:
- en
license:
- mit
tags:
- llama-2
- self-instruct
- distillation
- synthetic instruction
model_name: Nous Hermes Llama 2 7B
base_model: NousResearch/Nous-Hermes-llama-2-7b
inference: false
model_creator: NousResearch
model_type: llama
prompt_template: 'Below is an instruction that describes a task. Write a response
  that appropriately completes the request.


  ### Instruction:

  {prompt}


  ### Response:

  '
quantized_by: TheBloke
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Nous Hermes Llama 2 7B - GPTQ
- Model creator: [NousResearch](https://huggingface.co/NousResearch)
- Original model: [Nous Hermes Llama 2 7B](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b)

<!-- description start -->
## Description

This repo contains GPTQ model files for [NousResearch's Nous Hermes Llama 2 7B](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b).

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

<!-- description end -->
<!-- repositories-available start -->
## Repositories available

* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GGUF)
* [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: Alpaca

```
Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt}

### Response:

```

<!-- prompt-template end -->
<!-- licensing start -->
## Licensing

The creator of the source model has listed its license as `['mit']`, and this quantization has therefore used that same license.

As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.

In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [NousResearch's Nous Hermes Llama 2 7B](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b).
<!-- licensing end -->
<!-- README_GPTQ.md-provided-files start -->
## Provided files and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch.  See below for instructions on fetching from different branches.

All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.

<details>
  <summary>Explanation of GPTQ parameters</summary>

- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
- Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used.  Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.

</details>

| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
| [main](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, without Act Order and group size 128g. | 
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | 
| [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. | 
| [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | 
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | 
| [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. | 
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | 
| [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.31 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |

<!-- README_GPTQ.md-provided-files end -->

<!-- README_GPTQ.md-download-from-branches start -->
## How to download from branches

- In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Nous-Hermes-Llama-2-7B-GPTQ:main`
- With Git, you can clone a branch with:
```
git clone --single-branch --branch main https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ
```
- In Python Transformers code, the branch is the `revision` parameter; see below.
<!-- README_GPTQ.md-download-from-branches end -->
<!-- README_GPTQ.md-text-generation-webui start -->
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/Nous-Hermes-Llama-2-7B-GPTQ`.
  - To download from a specific branch, enter for example `TheBloke/Nous-Hermes-Llama-2-7B-GPTQ:main`
  - see Provided Files above for the list of branches for each option.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done".
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `Nous-Hermes-Llama-2-7B-GPTQ`
7. The model will automatically load, and is now ready for use!
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
  * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
<!-- README_GPTQ.md-text-generation-webui end -->

<!-- README_GPTQ.md-use-from-python start -->
## How to use this GPTQ model from Python code

### Install the necessary packages

Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.

```shell
pip3 install transformers>=4.32.0 optimum>=1.12.0
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/  # Use cu117 if on CUDA 11.7
```

If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:

```shell
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
pip3 install .
```

### For CodeLlama models only: you must use Transformers 4.33.0 or later.

If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
```shell
pip3 uninstall -y transformers
pip3 install git+https://github.com/huggingface/transformers.git
```

### You can then use the following code

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "TheBloke/Nous-Hermes-Llama-2-7B-GPTQ"
# To use a different branch, change revision
# For example: revision="main"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             trust_remote_code=False,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

prompt = "Tell me about AI"
prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{prompt}

### Response:

'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])
```
<!-- README_GPTQ.md-use-from-python end -->

<!-- README_GPTQ.md-compatibility start -->
## Compatibility

The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).

[ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.

[Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
<!-- README_GPTQ.md-compatibility end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute

Thanks to the [chirper.ai](https://chirper.ai) team!

Thanks to Clay from [gpus.llm-utils.org](llm-utils)!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

# Original model card: NousResearch's Nous Hermes Llama 2 7B


# Model Card: Nous-Hermes-Llama2-7b

Compute provided by our project sponsor Redmond AI, thank you! Follow RedmondAI on Twitter @RedmondAI.

## Model Description

Nous-Hermes-Llama2-7b is a state-of-the-art language model fine-tuned on over 300,000 instructions. This model was fine-tuned by Nous Research, with Teknium leading the fine tuning process and dataset curation, Redmond AI sponsoring the compute, and several other contributors.

This Hermes model uses the exact same dataset as Hermes on Llama-1. This is to ensure consistency between the old Hermes and new, for anyone who wanted to keep Hermes as similar to the old one, just more capable.

This model stands out for its long responses, lower hallucination rate, and absence of OpenAI censorship mechanisms. The fine-tuning process was performed with a 4096 sequence length on an 8x a100 80GB DGX machine.


## Model Training

The model was trained almost entirely on synthetic GPT-4 outputs. Curating high quality GPT-4 datasets enables incredibly high quality in knowledge, task completion, and style.

This includes data from diverse sources such as GPTeacher, the general, roleplay v1&2, code instruct datasets, Nous Instruct & PDACTL (unpublished), and several others, detailed further below

## Collaborators
The model fine-tuning and the datasets were a collaboration of efforts and resources between Teknium, Karan4D, Emozilla, Huemin Art and Redmond AI. 
  
Special mention goes to @winglian for assisting in some of the training issues.

Huge shoutout and acknowledgement is deserved for all the dataset creators who generously share their datasets openly. 

Among the contributors of datasets:
- GPTeacher was made available by Teknium
- Wizard LM by nlpxucan
- Nous Research Instruct Dataset was provided by Karan4D and HueminArt.  
- GPT4-LLM and Unnatural Instructions were provided by Microsoft
- Airoboros dataset by jondurbin
- Camel-AI's domain expert datasets are from Camel-AI
- CodeAlpaca dataset by Sahil 2801.

If anyone was left out, please open a thread in the community tab.

## Prompt Format

The model follows the Alpaca prompt format:
```
### Instruction:
<prompt>

### Response:
<leave a newline blank for model to respond>

```

or 

```
### Instruction:
<prompt>

### Input:
<additional context>

### Response:
<leave a newline blank for model to respond>
```

AGIEval
```  
|             Task             |Version| Metric |Value |   |Stderr|
|------------------------------|------:|--------|-----:|---|-----:|
|agieval_aqua_rat              |      0|acc     |0.2520|±  |0.0273|
|                              |       |acc_norm|0.2402|±  |0.0269|
|agieval_logiqa_en             |      0|acc     |0.2796|±  |0.0176|
|                              |       |acc_norm|0.3241|±  |0.0184|
|agieval_lsat_ar               |      0|acc     |0.2478|±  |0.0285|
|                              |       |acc_norm|0.2348|±  |0.0280|
|agieval_lsat_lr               |      0|acc     |0.2843|±  |0.0200|
|                              |       |acc_norm|0.2765|±  |0.0198|
|agieval_lsat_rc               |      0|acc     |0.3271|±  |0.0287|
|                              |       |acc_norm|0.3011|±  |0.0280|
|agieval_sat_en                |      0|acc     |0.4660|±  |0.0348|
|                              |       |acc_norm|0.4223|±  |0.0345|
|agieval_sat_en_without_passage|      0|acc     |0.3738|±  |0.0338|
|                              |       |acc_norm|0.3447|±  |0.0332|
|agieval_sat_math              |      0|acc     |0.2500|±  |0.0293|
|                              |       |acc_norm|0.2364|±  |0.0287|
```  

## Benchmark Results




## Resources for Applied Use Cases:
For an example of a back and forth chatbot using huggingface transformers and discord, check out: https://github.com/teknium1/alpaca-discord  
For an example of a roleplaying discord chatbot, check out this: https://github.com/teknium1/alpaca-roleplay-discordbot  

LM Studio is a good choice for a chat interface that supports GGML versions (to come)

## Future Plans
We plan to continue to iterate on both more high quality data, and new data filtering techniques to eliminate lower quality data going forward. 

## Model Usage
The model is available for download on Hugging Face. It is suitable for a wide range of language tasks, from generating creative text to understanding and following complex instructions.