File size: 14,328 Bytes
60a0b33
 
 
c07fcbe
60a0b33
 
 
 
c07fcbe
 
8f39313
 
 
 
 
4a8d080
8f39313
 
c07fcbe
8f39313
 
c07fcbe
60a0b33
 
 
 
 
 
 
3a8efe1
 
 
 
60a0b33
 
9d2f75e
 
c07fcbe
60a0b33
c07fcbe
60a0b33
c07fcbe
60a0b33
c07fcbe
60a0b33
c07fcbe
60a0b33
 
9d2f75e
 
 
60a0b33
7c6a3ac
c07fcbe
3a8efe1
9d2f75e
3a8efe1
c07fcbe
cfd3a3f
9d2f75e
cfd3a3f
9d2f75e
60a0b33
 
 
9d2f75e
60a0b33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b4cd4d
60a0b33
7b4cd4d
60a0b33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d1999a
60a0b33
1b4c932
60a0b33
 
 
7d1999a
1b4c932
4a8d080
1b4c932
60a0b33
 
 
c07fcbe
 
 
4a8d080
 
 
c07fcbe
 
d375338
c07fcbe
d375338
c07fcbe
d375338
4a8d080
c07fcbe
4a8d080
c07fcbe
 
d375338
c07fcbe
4a8d080
c07fcbe
4a8d080
c07fcbe
4a8d080
60a0b33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a8d080
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
---
datasets:
- tiiuae/falcon-refinedweb
license: apache-2.0
language:
- en
inference: false
---

<!-- header start -->
<div style="width: 100%;">
    <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<!-- header end -->

# Falcon-7B-Instruct GPTQ

This repo contains an experimantal GPTQ 4bit model for [Falcon-7B-Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct).

It is the result of quantising to 4bit using [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ).

## Need support? Want to discuss? I now have a Discord!

Join me at: https://discord.gg/UBgz4VXf

## EXPERIMENTAL

Please note this is an experimental GPTQ model. Support for it is currently quite limited.

It is also expected to be **SLOW**. This is currently unavoidable, but is being looked at.

## AutoGPTQ

AutoGPTQ is required: `pip install auto-gptq`

AutoGPTQ provides pre-compiled wheels for Windows and Linux, with CUDA toolkit 11.7 or 11.8.

If you are running CUDA toolkit 12.x, you will need to compile your own by following these instructions:

```
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
pip install .
```

These manual steps will require that you have the [Nvidia CUDA toolkit](https://developer.nvidia.com/cuda-12-0-1-download-archive) installed.

## text-generation-webui

There is provisional AutoGPTQ support in text-generation-webui.

This requires text-generation-webui as of commit 204731952ae59d79ea3805a425c73dd171d943c3.

So please first update text-genration-webui to the latest version.

## How to download and use this model in text-generation-webui

1. Launch text-generation-webui with the following command-line arguments: `--autogptq --trust-remote-code`
2. Click the **Model tab**.
3. Under **Download custom model or LoRA**, enter `TheBloke/falcon-7B-instruct-GPTQ`.
4. Click **Download**.
5. Wait until it says it's finished downloading.
6. Click the **Refresh** icon next to **Model** in the top left.
7. In the **Model drop-down**: choose the model you just downloaded, `falcon-7B-instruct-GPTQ`.
8. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!

## About `trust_remote_code`

Please be aware that this command line argument causes Python code provided by Falcon to be executed on your machine.

This code is required at the moment because Falcon is too new to be supported by Hugging Face transformers. At some point in the future transformers will support the model natively, and then `trust_remote_code` will no longer be needed.

In this repo you can see two `.py` files - these are the files that get executed. They are copied from the base repo at [Falcon-7B-Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct).

## Simple Python example code

To run this code you need to install AutoGPTQ and einops:
```
pip install auto-gptq
pip install einops
```

You can then run this example code:
```python
import torch
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM

# Download the model from HF and store it locally, then reference its location here:
quantized_model_dir = "/path/to/falcon7b-instruct-gptq"

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir, use_fast=False)

model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0", use_triton=False, use_safetensors=True, torch_dtype=torch.float32, trust_remote_code=True)

prompt = "Write a story about llamas"
prompt_template = f"### Instruction: {prompt}\n### Response:"

tokens = tokenizer(prompt_template, return_tensors="pt").to("cuda:0").input_ids
output = model.generate(input_ids=tokens, max_new_tokens=100, do_sample=True, temperature=0.8)
print(tokenizer.decode(output[0]))
```

## Provided files

**gptq_model-4bit-64g.safetensors**

This will work with AutoGPTQ 0.2.0 and later.

It was created with groupsize 64 to give higher inference quality, and without `desc_act` (act-order) to increase inference speed.

* `gptq_model-4bit-64g.safetensors`
  * Works with AutoGPTQ CUDA 0.2.0 and later.
    * At this time it does not work with AutoGPTQ Triton, but support will hopefully be added in time.
  * Works with text-generation-webui using `--trust-remote-code`
  * Does not work with any version of GPTQ-for-LLaMa
  * Parameters: Groupsize = 64. No act-order.

<!-- footer start -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)

## Thanks, and how to contribute.

Thanks to the [chirper.ai](https://chirper.ai) team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.

Thank you to all my generous patrons and donaters!
<!-- footer end -->

# ✨ Original model card: Falcon-7B-Instruct

**Falcon-7B-Instruct is a 7B parameters causal decoder-only model built by [TII](https://www.tii.ae) based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) and finetuned on a mixture of chat/instruct datasets. It is made available under the [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-7b-instruct/blob/main/LICENSE.txt).**

*Paper coming soon 😊.*

## Why use Falcon-7B-Instruct?

* **You are looking for a ready-to-use chat/instruct model based on [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).**
* **Falcon-7B is a strong base model, outperforming comparable open-source models** (e.g., [MPT-7B](https://huggingface.co/mosaicml/mpt-7b), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1) etc.), thanks to being trained on 1,500B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
* **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).

πŸ’¬ **This is an instruct model, which may not be ideal for further finetuning.** If you are interested in building your own instruct/chat model, we recommend starting from [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).

πŸ”₯ **Looking for an even more powerful model?** [Falcon-40B-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) is Falcon-7B-Instruct's big brother!

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "tiiuae/falcon-7b-instruct"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)
sequences = pipeline(
   "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
    max_length=200,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

```

πŸ’₯ **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**


# Model Card for Falcon-7B-Instruct

## Model Details

### Model Description

- **Developed by:** [https://www.tii.ae](https://www.tii.ae);
- **Model type:** Causal decoder-only;
- **Language(s) (NLP):** English and French;
- **License:** [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-7b-instruct/blob/main/LICENSE.txt);
- **Finetuned from model:** [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).

### Model Source

- **Paper:** *coming soon*.

## Uses

### Direct Use

Falcon-7B-Instruct has been finetuned on a mixture of instruct and chat datasets.

### Out-of-Scope Use

Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.

## Bias, Risks, and Limitations

Falcon-7B-Instruct is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.

### Recommendations

We recommend users of Falcon-7B-Instruct to develop guardrails and to take appropriate precautions for any production use.

## How to Get Started with the Model


```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model = "tiiuae/falcon-7b-instruct"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)
sequences = pipeline(
   "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
    max_length=200,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")

```

## Training Details

### Training Data

Falcon-7B-Instruct was finetuned on a 250M tokens mixture of instruct/chat datasets.

| **Data source**    | **Fraction** | **Tokens** | **Description**                       |
|--------------------|--------------|------------|-----------------------------------|
| [Bai ze](https://github.com/project-baize/baize-chatbot) | 65%          | 164M     | chat                 |
| [GPT4All](https://github.com/nomic-ai/gpt4all)              | 25%           | 62M       | instruct                                  |
| [GPTeacher](https://github.com/teknium1/GPTeacher)      | 5%           | 11M        | instruct |
| [RefinedWeb-English](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 5%          | 13M     | massive web crawl                 |


The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) tokenizer.


## Evaluation

*Paper coming soon.*

See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.

Note that this model variant is not optimized for NLP benchmarks.


## Technical Specifications

For more information about pretraining, see [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b).

### Model Architecture and Objective

Falcon-7B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).

The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:

* **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
* **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135));
* **Decoder-block:** parallel attention/MLP with a single layer norm.

| **Hyperparameter** | **Value** | **Comment**                            |
|--------------------|-----------|----------------------------------------|
| Layers             | 32        |                                        |
| `d_model`          | 4544      | Increased to compensate for multiquery                                       |
| `head_dim`         | 64        | Reduced to optimise for FlashAttention |
| Vocabulary         | 65024     |                                        |
| Sequence length    | 2048      |                                        |

### Compute Infrastructure

#### Hardware

Falcon-7B-Instruct was trained on AWS SageMaker, on 32 A100 40GB GPUs in P4d instances.

#### Software

Falcon-7B-Instruct was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)


## Citation

*Paper coming soon 😊.*

## License

Falcon-7B-Instruct is made available under the [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-7b-instruct/blob/main/LICENSE.txt). Broadly speaking,
* You can freely use our models for research and/or personal purpose;
* You are allowed to share and build derivatives of these models, but you are required to give attribution and to share-alike with the same license;
* For commercial use, you are exempt from royalties payment if the attributable revenues are inferior to $1M/year, otherwise you should enter in a commercial agreement with TII.


## Contact
falconllm@tii.ae