File size: 8,742 Bytes
61fd02c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
from typing import Union, Callable, List, Optional, Dict
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torch.optim import Adam
import numpy as np
import librosa
import miniaudio
from pathlib import Path
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from functools import partial
import math
from mae import MaskedAutoencoderViT
def load_audio(
path: str,
sr: int = 32000,
duration: int = 20,
) -> (np.ndarray, int):
g = miniaudio.stream_file(path, output_format=miniaudio.SampleFormat.FLOAT32, nchannels=1,
sample_rate=sr, frames_to_read=sr * duration)
signal = np.array(next(g))
return signal
def mel_spectrogram(
signal: np.ndarray,
sr: int = 32000,
n_fft: int = 800,
hop_length: int = 320,
n_mels: int = 128,
) -> np.ndarray:
mel_spec = librosa.feature.melspectrogram(
y=signal, sr=sr, n_fft=n_fft, hop_length=hop_length, n_mels=n_mels,
window='hann', pad_mode='constant'
)
mel_spec = librosa.power_to_db(mel_spec) # (freq, time)
return mel_spec.T # (time, freq)
def normalize(arr: np.ndarray, eps: float = 1e-8) -> np.ndarray:
return (arr - arr.mean()) / (arr.std() + eps)
device = 'cuda:0'
seed = 42
train_size = 0.8 # 80% train, 20% test
batch_size_train = 10
batch_size_test = 32
num_workers = 1
lr = 1e-3
epochs = 200
detection_epoch = 20
sr = 32000
n_fft = 800 # 25ms
hop_length = 320 # 10ms
duration = 10000 # seconds. 10000 ~= Inf for reading the whole audio file
feature_length = 2048 # length of mel spectrogram (MAE is trained with 2048x128 mel spectrogram)
patch_size = 16 # MAE split the mel spectrogram into patches with size 16x16
feature_padding = True
header = 'mean'
mlp_num_neurons = [768, 10]
mlp_activation_layer = nn.ReLU
mlp_bias = True
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# =============================== model ===============================
mae = MaskedAutoencoderViT(
img_size=(2048, 128),
patch_size=16,
in_chans=1,
embed_dim=768,
depth=12,
num_heads=12,
decoder_mode=1,
no_shift=False,
decoder_embed_dim=512,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
norm_pix_loss=False,
pos_trainable=False,
)
# Load pre-trained weights
ckpt_path = 'music-mae-32kHz.pth.pth'
mae.load_state_dict(torch.load(ckpt_path, map_location='cpu'))
mae.to(device)
mae.eval()
# =============================== data ===============================
fp = Path('GTZAN-dataset/genres_original')
audio_data = dict() # {genre: [audio_file1, audio_file2, ...]}
for d in fp.iterdir():
if d.is_dir():
for f in d.iterdir():
if f.is_file():
genres = f.name.split('.')[0]
if genres not in audio_data:
audio_data[genres] = [str(f)]
else:
audio_data[genres].append(str(f))
audio_data_train = dict()
audio_data_test = dict()
for k, v in audio_data.items():
train_data, test_data = train_test_split(v, train_size=train_size, random_state=seed, shuffle=True)
audio_data_train[k] = train_data
audio_data_test[k] = test_data
@torch.no_grad()
def infer_mae_embedding(data: Dict) -> Dict:
emb_data = dict() # {genre: [embed1, embed2, ...]}
for k, v in tqdm(data.items(), desc='infer mae embedding', total=len(data)):
for f in v:
try:
mel_spec = mel_spectrogram(load_audio(f, duration=duration), sr=sr, n_fft=n_fft, hop_length=hop_length)
except Exception as e:
print(e)
print(f)
continue
# pad the mel spectrogram to the multiple of patch_size
input_length = mel_spec.shape[0]
n = math.ceil(input_length / patch_size)
if input_length < patch_size * n:
pad_length = patch_size * n - input_length
mel_spec = np.pad(mel_spec, ((0, pad_length), (0, 0)), mode='constant', constant_values=mel_spec.min())
# if the length of mel spectrogram after padding is longer than feature_length,
# split it into multiple snippets
input_length = mel_spec.shape[0]
embeds = []
for i in range(0, input_length, feature_length):
snippet = mel_spec[i:i + feature_length]
snippet = normalize(snippet)
snippet = snippet[None, None, :, :]
x = torch.from_numpy(snippet).to(device)
y = mae.forward_encoder_no_mask(x, header=header) # (1, 768)
y = y / y.norm(p=2, dim=-1, keepdim=True) # normalize
y = y.cpu().numpy().squeeze()
embeds.append(y)
y = np.mean(embeds, axis=0) # (768,)
if k not in emb_data:
emb_data[k] = [y]
else:
emb_data[k].append(y)
return emb_data
audio_emb_train = infer_mae_embedding(audio_data_train)
audio_emb_test = infer_mae_embedding(audio_data_test)
label_set = set(audio_emb_train.keys())
label_map = {label: i for i, label in enumerate(label_set)}
print(label_map)
class MLP(torch.nn.Sequential):
def __init__(
self,
num_neurons: List[int],
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
bias: bool = True,
dropout: float = 0.0,
):
layers = []
for c_in, c_out in zip(num_neurons[:-1], num_neurons[1:]):
layers.append(torch.nn.Linear(c_in, c_out, bias=bias))
layers.append(activation_layer())
layers.append(torch.nn.Dropout(dropout))
# remove the last two layers
layers.pop()
layers.pop()
super().__init__(*layers)
class SimpleDataset(Dataset):
def __init__(self, dict_data: Dict, label_map: Dict):
self.embed_with_label = []
for k, v in dict_data.items():
for emb in v:
self.embed_with_label.append((emb, label_map[k]))
def __len__(self):
return len(self.embed_with_label)
def __getitem__(self, idx):
return self.embed_with_label[idx]
train_dataset = SimpleDataset(audio_emb_train, label_map)
test_dataset = SimpleDataset(audio_emb_test, label_map)
print(f"len(train_dataset): {len(train_dataset)}")
print(f"len(test_dataset): {len(test_dataset)}")
def train_one_epoch(model, device, dataloader, loss_fn, optimizer):
model.train()
# for batch in tqdm(dataloader, desc='train', total=len(dataloader)):
for batch in dataloader:
x, y = batch
x = x.to(device)
y = y.to(device)
y_logit = model(x)
loss = loss_fn(y_logit, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
@torch.no_grad()
def eval_one_epoch(model, device, dataloader, loss_fn):
model.eval()
total_loss = 0.0
total_correct = 0.0
total_num = 0.0
for batch in dataloader:
x, y = batch
x = x.to(device)
y = y.to(device)
y_logit = model(x)
loss = loss_fn(y_logit, y)
total_loss += loss.item() * x.shape[0]
total_correct += (y_logit.argmax(dim=-1) == y).sum().item()
total_num += x.shape[0]
loss = total_loss / total_num
acc = total_correct / total_num
return loss, acc
mlp = MLP(
num_neurons=mlp_num_neurons,
activation_layer=mlp_activation_layer,
bias=mlp_bias,
dropout=0.0
)
print(MLP)
mlp.to(device)
optimizer = Adam(mlp.parameters(), lr=lr)
loss_fn = nn.CrossEntropyLoss()
train_dataloader = DataLoader(train_dataset, batch_size=batch_size_train, shuffle=True, num_workers=num_workers)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size_test, shuffle=False, num_workers=num_workers)
test_loss, test_accuracy = eval_one_epoch(mlp, device, test_dataloader, loss_fn)
print(f"init: test loss {test_loss:.4f}, test accuracy {test_accuracy:.4f}")
best_accuracy = 0.0
at = 0
for epoch in range(epochs):
train_one_epoch(mlp, device, train_dataloader, loss_fn, optimizer)
test_loss, test_accuracy = eval_one_epoch(mlp, device, test_dataloader, loss_fn)
print(f"epoch {epoch}: test loss {test_loss:.4f}, test accuracy {test_accuracy:.4f}")
if test_accuracy > best_accuracy:
best_accuracy = test_accuracy
at = epoch
if epoch - at >= detection_epoch:
print(f"early stop at epoch {epoch}")
print(f"best accuracy: {best_accuracy:.4f} at epoch {at}")
break
|