Thamer/albert-fine-tuned

This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.6843
  • Train Binary Accuracy: 0.5640
  • Validation Loss: 0.6990
  • Validation Binary Accuracy: 0.5092
  • Train Accuracy: 0.6032
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0002, 'decay_steps': 3156, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Binary Accuracy Validation Loss Validation Binary Accuracy Train Accuracy Epoch
0.6987 0.5410 0.6446 0.6835 0.5333 0
0.6976 0.5642 0.6981 0.5092 0.4908 1
0.6843 0.5640 0.6990 0.5092 0.6032 2

Framework versions

  • Transformers 4.31.0
  • TensorFlow 2.11.0
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
33
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Thamer/albert-fine-tuned

Finetuned
(170)
this model