metadata
license: llama2
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: epfl-llm/meditron-7b
model-index:
- name: md7b-alpha
results: []
See axolotl config
axolotl version: 0.3.0
base_model: epfl-llm/meditron-7b
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: Open-Orca/SlimOrca-Dedup
type: sharegpt
- path: axiong/pmc_llama_instructions
type: alpaca
- path: xzuyn/chatdoctor-200k-stripped
type: alpaca
- path: technoculture/riddle_sense
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: MD7b-alpha
wandb_entity: technoculture
wandb_watch:
wandb_name:
wandb_log_model: true
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler_type: cosine
lr_scheduler: cosine
learning_rate: 0.0003
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
do_eval: true
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1
hub_model_id: technoculture/md7b-alpha
hub_strategy: every_save
push_to_hub: true
log_level: info
logging_steps: 1
logging_strategy: steps
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: false
local_rank:
xformers_attention:
flash_attention: true
warmup_steps: 2000
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
md7b-alpha
This model is a fine-tuned version of epfl-llm/meditron-7b on a set of datasets. It achieves the following results on the evaluation set:
- Loss: 1.0238
Evaluation
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2000
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.1602 | 0.0 | 1 | 1.9066 |
1.1128 | 0.5 | 14744 | 1.1620 |
1.2463 | 1.0 | 29488 | 1.1288 |
0.8291 | 1.49 | 44232 | 1.1025 |
1.0524 | 1.99 | 58976 | 1.0771 |
1.0369 | 2.48 | 73720 | 1.0563 |
1.0402 | 2.98 | 88464 | 1.0299 |
0.943 | 3.47 | 103208 | 1.0271 |
1.0845 | 3.97 | 117952 | 1.0238 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16