File size: 3,969 Bytes
8c4ea5c
62b9c9a
8c4ea5c
62b9c9a
 
 
8c4ea5c
62b9c9a
 
 
8c4ea5c
 
62b9c9a
 
8c4ea5c
62b9c9a
 
8c4ea5c
62b9c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ad146b
62b9c9a
 
 
7ad146b
62b9c9a
 
8c4ea5c
62b9c9a
8c4ea5c
62b9c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c4ea5c
 
62b9c9a
8c4ea5c
62b9c9a
 
 
 
8c4ea5c
 
 
 
 
 
 
 
 
 
 
 
 
7ad146b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
---
license: llama2
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: epfl-llm/meditron-7b
model-index:
- name: md7b-alpha
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.3.0`
```yaml
base_model: epfl-llm/meditron-7b
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: Open-Orca/SlimOrca-Dedup
    type: sharegpt
  - path: axiong/pmc_llama_instructions
    type: alpaca
  - path: xzuyn/chatdoctor-200k-stripped
    type: alpaca
  - path: technoculture/riddle_sense
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./qlora-out

adapter: qlora
lora_model_dir:

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: MD7b-alpha
wandb_entity: technoculture
wandb_watch: 
wandb_name: 
wandb_log_model: true

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler_type: cosine
lr_scheduler: cosine
learning_rate: 0.0003

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

do_eval: true
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1

hub_model_id: technoculture/md7b-alpha
hub_strategy: every_save
push_to_hub: true

log_level: info
logging_steps: 1
logging_strategy: steps

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: false
local_rank:
xformers_attention:
flash_attention: true

warmup_steps: 2000
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

```

</details><br>

# md7b-alpha

This model is a fine-tuned version of [epfl-llm/meditron-7b](https://huggingface.co/epfl-llm/meditron-7b) on a set of datasets.
It achieves the following results on the evaluation set:
- Loss: 1.0238

## Evaluation

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2000
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step   | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 2.1602        | 0.0   | 1      | 1.9066          |
| 1.1128        | 0.5   | 14744  | 1.1620          |
| 1.2463        | 1.0   | 29488  | 1.1288          |
| 0.8291        | 1.49  | 44232  | 1.1025          |
| 1.0524        | 1.99  | 58976  | 1.0771          |
| 1.0369        | 2.48  | 73720  | 1.0563          |
| 1.0402        | 2.98  | 88464  | 1.0299          |
| 0.943         | 3.47  | 103208 | 1.0271          |
| 1.0845        | 3.97  | 117952 | 1.0238          |


### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
## Training procedure


The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16