bert-finetuned-ner

This model is a fine-tuned version of distilbert/distilbert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1640
  • Precision: 0.9223
  • Recall: 0.9192
  • F1: 0.9207
  • Accuracy: 0.9607

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1926 1.0 1756 0.1809 0.9104 0.9056 0.9080 0.9543
0.1318 2.0 3512 0.1622 0.9200 0.9156 0.9178 0.9592
0.0933 3.0 5268 0.1640 0.9223 0.9192 0.9207 0.9607

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.2.1+cpu
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
65.2M params
Tensor type
F32
ยท
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Tarun-1999M/bert-finetuned-ner

Finetuned
(224)
this model

Dataset used to train Tarun-1999M/bert-finetuned-ner

Space using Tarun-1999M/bert-finetuned-ner 1

Evaluation results