Edit model card

SetFit with firqaaa/indo-sentence-bert-base for indonlu/smsa

Author

Kelompok 3 :

  • Muhammad Guntur Arfianto (20/459272/PA/19933)
  • Putri Iqlima Miftahuddini (23/531392/NUGM/01467)
  • Alan Kurniawan (23/531301/NUGM/01382)

This is a SetFit model that can be used for Text Classification. This SetFit model uses firqaaa/indo-sentence-bert-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

The dataset that was used for fine-tuning this model is indonlu, specifically its subset, SmSa dataset.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1
  • 'dirjen per kereta api - an kemenhub zulfikri memastikan tahun 2018 tarif kereta api kelas ekonomi tidak ada kenaikan untuk semua jurusan setelah ada subsidi dari pemerintah untuk pt kan'
  • 'baik terima kasih banyak'
  • 'kaitan kalung cantik bahan perak / silver 925'
0
  • 'jokowi tidak suka sebar isu bohong'
  • 'masih dengan hawa dingin khas lembang , d sdl menawarkan menu ayam sebagai jagoan nya . ayam ngumpet dan sate goreng adalah 2 menu khas restoran ini . selonjoran di gazebo sambil mencari ayam yang memang seolah ngumpet untuk dimakan menjadikan sensasi tersendiri . dari segi rasa , restoran ini termasuk yang rekomendasi .'
  • 'menu utama adalah indomie dengan variasi topping . rasanya , . ya indomie . tidak terlalu istimewa . cocok untuk tempat santai dan nongkrong anak anak muda karena penyedia aneka permainan papan . kopi gayo dan latte nya oke . roti bakar green tea juga oke .'
2
  • 'tetap tidak prabowo walau saya juga tidak suka jokowi'
  • 'kenapa tidak rekomendasi ? 1 . pempek belum matang , tapi sudah disajikan 2 . pesan sorabi , sudah lama pakai bonus lalat 3 . pesan iga bakar coet , di menu dapat bintang 3 , realita nya tidak enak sama sekali 4 . sorabi kinca dingin , yang datang ternyata sorabi pakai sirop kopyor , nama nya kinca bukan nya air gulu merah ya ? secara keseluruhan baik , tidak puas sama pelayanan dan kualitas makanan di .'
  • 'nabi muhammad adalah hewan gila seks .'

Evaluation

Metrics

Label Accuracy Precision Recall F1
all 0.8182 0.8182 0.8182 0.8182

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("TRUEnder/setfit-indosentencebert-indonlusmsa-32-shot")
# Run inference
preds = model("liverpool sukses di kandang tottenham")

Training Details

Training Set Metrics

Label Training Sample Count
0 32
1 32
2 32

Training Hyperparameters

  • batch_size: (16, 2)
  • num_epochs: (6, 16)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results (Epoch-to-epoch)

Epoch Step Training Loss Validation Loss
1.0 384 0.0002 0.1683
2.0 768 0.0001 0.1732
3.0 1152 0.0001 0.1739
4.0 1536 0.0 0.174
5.0 1920 0.0001 0.1765
6.0 2304 0.0 0.1767
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.0+cu121
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
3
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for TRUEnder/setfit-indosentencebert-indonlusmsa-32-shot

Finetuned
(8)
this model

Evaluation results